
June 1995 UILU-ENG-95-2218
CRHC-95-14

Center for Reliable and High Performance Computing

S LECTEE•,
'% 'UN 2 & 1995 ik•• ;

L F•

Fault-Sensitivity and
Wear-Out Analysis of
VLSI Systems

Gwan Seung Choi

Coordinated Science Laboratory 19950626 067
College of Engineering

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABI8ITY OF REPORT

2b. DECLASSIFICATION IDOWNGRADING SCHEDULE" Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL ,,a •NAME OF MONITORIN.G ORGANIZATION
Coordinated Science Lab (If applicable) Liational Aeronautics & Space Administration

University of Illinois N/A Office of Naval Research

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
NASA Langlery Research Center, Hampton, VA

1308 W. Main ST. 800 N. Q incy St.
Urbana, IL 61801 Arlington, VA 22217

Ba. NAME OF FUNDING/SPONSORING NASA & 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Joint Services" (If applicable) NASA NAG 1- 13

Electronics Program N00014- 90-J-1270

Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

800 N. Quincy St. NASA Langley Res. Cen PROGRAM PROJECT TASK WORK UNIT•ELEMENT NO. NO. INO. IACCESSION NO.
Arlington, VA 22217 Hampton, VA 23665 E

11. TITLE (Include Security Classification)

Fault-Sensitivity and Wear-Out Analysis of VLSI Systems

12. PERSONAL AUTHOR(S)

Gwan Seung Choi

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 5. PAGE COUNT

Technical FROM TO June 1995 148

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessarv and identify bv block numhnrl|
This thesis describes simulation approaches to conduct fault sensitivity
and wear-out failure analysis of VLSI systems. A fault-injection approach
to study transient impact in VLSI systems is developed. Through simulated

fault injection at the device level and subsequent fault propagation at the

gate, functional and software levels, it is possible to identify critical

bottlenecks in dependability. Techniques to speed up the fault simulation
and to perform statistical analysis of fault impact are developed. A

wear-out simulation environment is also developed to closely mimic dynamic

sequences of wear-out events in a device through time, to localize weak

location/aspect of target chip and to allow generation of Time-to-Failure
(TTF) distribution of a VLSI chip as whole. First, an accurate simulation
of a target chip and its application code is performed to acquire real
workload trace data on switch activity. Then, using this switch activity
information, wear-out of the each component of the chip is simulated using
Monte Carlo techniques. DTý; 1- ' •FIi• CI'FD 3

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
13 UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

UNCLASSIFIED

FAULT-SENSITIVITY AND WEAR-OUT ANALYSIS OF VLSI SYSTEMS

BY

GWAN SEUNG CHOI

B.S., University of Illinois, 1989
M.S., University of Illinois, 1990

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1994

Accesion For

NTIS CRA&M
DTIC TAB
Unannounced LJ

Justification

Urbana, Illinois By

Distribution I

Availability Codes

Avail and/orDist Special

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

THE GRADUATE COLLEGE

JULY 1994

WE HEREBY RECOMMEND THAT THE THESIS BY

GWAN SEUNG CHOI

ENTITLED FAULT-SENSITIVITY AND WEAR-OUT ANALYSIS

OF VLSI SYSTEMS

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY

I . I- / /

Director of Thesis Research

Head of Department

Committee on Final Examinationt / -

,/C-airperson

.1' /7 LJ
f ,

f Required for doctor's degree but not for master's.

0-5 17

© Copyright 1994 by Gwan Seung Choi

FAULT-SENSITIVITY AND WEAR-OUT ANALYSIS OF VLSI SYSTEMS

Gwan Seung Choi, Ph.D.
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, 1994

Ravishankar K. Iyer, Advisor

This thesis describes simulation approaches to conduct fault sensi-

tivity and wear-out failure analysis of VLSI systems. A fault-injection

approach to study transient impact in VLSI systems is developed.

Through simulated fault injection at the device level and subsequent

fault propagation at the gate, functional and software levels, it is possi-

ble to identify critical bottlenecks in dependability. Techniques to

speed up the fault simulation and to perform statistical analysis of fault

impact are developed. A wear-out simulation environment is also

developed to closely mimic dynamic sequences of wear-out events in a

device through time, to localize weak location/aspect of target chip and

to allow generation of Time-to-Failure (TTF) distribution of a VLSI

chip as whole. First, an accurate simulation of a target chip and its

application code is performed to acquire real workload trace data on

switch activity. Then, using this switch activity information, wear-out

of the each component of the chip is simulated using Monte Carlo tech-

niques.

iv

DEDICATION

To my parents, TaeSun & YeongEui Choi

V

ACKNOWLEDGMENTS

First, I thank my advisor, Professor Ravi Iyer, for his scholarly expert gui-

dance, persistent support, and patience. I thank Professors S. Kang, J. Patel, E.

Rosenbaum, and D. Saab for serving on my Ph.D. dissertation committee. I

would also like to thank my coworkers and friends at the Center for Reliable &

High-Performance Computing for their friendship, especially Jim Barnett,

Hungse Cha, Kumar Goswami, Aloke Gupta, Wei-lun Kao, Sungho Kim, Inhwan

Lee, Linda Lin, Devi Nair, Greg Ries, Jaidip Singh, Dong Tang, Timothy Tsai,

Steven Vanderleest, and Fran Wagner. I am also grateful of Professor Fuchs for

his support and guidance. I also thank Professor Saleh for providing insight into

the SPLICE simulator. Most importantly, this work would not have been accom-

plished without the help and encouragement of my parents, Mr. & Mrs. Tae Sun

Choi. Special thanks and gratitude go to my wife, Hyunjung, who patiently sup-

ported for completion of this work. Also, I thank my best friend and brother,

SeungJin, and his wife for their support and encouragement. Lastly, I thank my

daughter, Sarah, for bringing me great luck.

vi

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION

1.1. Related Research and Motivation .. 2

1.1.1. Transient fault ... 2

1.1.2. Permanent fault ... 7

1.2. Approaches and Impact 11

1.2.1. Mixed-mode simulation ... 11

1.2.2. Fault-dictionary approach .. 12

1.2.3. Coincidental fault analysis .. 13

1.2.4. Program upset analysis ... 14

1.2.5. Monte Carlo wear-out simulation ... 16

1.3. Thesis Organization ... 17

2. TARGET SYSTEMS .. 19

2.1. HS1602 16-bit Microprocessor ... 19

2.2. EEC131 Jet-Engine Controller ... 21

2.3. MC68000 Microprocessor .. 23

3. TRANSIENT FAULT IMPACT ANALYSIS .. 25

3.1. Mixed-Mode Simulation Approach .. 25

Vii

3.1.1. Simulation environment ... 28

3.1.2. Fault/error analysis .. 31

3.1.3. Statistical analysis environment .. 32

3.1.4. Experiment ... 35

3.1.5. Results (a). Transient fault severity (b). Pin error

distribution (c). Charge Level Analysis 36

3.1.6. Empirical models (a). Error Propagation Model
(b). State Transition Model ... 44

3.1.7. Discussion ... 51

3.2. Fault-Dictionary Based Approach .. 53

3.2.1. Circuit-level fault injection ... 54

3.2.2. Concurrent transient simulation .. 62

3.2.3. Illustration of the fault dictionary approach 64

3.2.4. Discussion .. 67

4. TRANSIENT FAULT MODEL .. 68

4.1. Validation of the Mixed-Mode Transient Simulation 70

4.2. Fault Model Comparison .. 72

4.2.1. High-level impact of transient fault models 74

4.2.2. Results .. 76

4.2.3. Discussion .. 78

5. COINCIDENTAL FAULT ANALYSIS .. 80

5.1. Coincidental Fault Injection Experiment 81

viii

5.2. Impact of Single and Multiple Fault Injections 83

5.3. M ultiple Fault Injection .. 85

5.4. Confidence Lim its ... 86

5.5. Discussion .. 87

6. SOFTW ARE UPSET AN ALY SIS .. 89

6.1. The Experim ental Approach ... 90

6.2. Fault/Error/U pset Analysis ... 92

6.3. Upset Classification .. 95

6.4. Fault Sim ulation .. 97

6.5. Results .. 99

6.5.1. Upset severity ... 99

6.5.2. Error propagation m odeling .. 101

6.6. Discussion ... 104

7. PERM AN ENT-FAULT ANALY SIS .. 106

7.1. The Experim ental Analysis Approach .. 107

7.1.1. The logic sim ulation ... 110

7.1.2. Monte Carlo simulation (a). Electromigration

(b). Oxide breakdown 111

7.1.3. Im portance sam pling ... 124

7.2. Case Study .. 129

7.2.1. Experim ent .. 129

ix

7.2.2. Results .. 130

7.3. Discussion ... 135

8. CONCLUSIONS ... 137

8.1. Sum m aries .. 137

8.1.1. Transient fault sensitivity analysis .. 137

8.1.2. Perm anent fault wear-out sim ulation 140

8.2. Future Extensions ... 140

REFERENCE .. 142

VITA ... 148

Io

CHAPTER 1.

INTRODUCTION

Analysis of VLSI systems for reliability and fault sensitivity at the design

stage is an essential step in avoiding the high cost of redesign and modification

after the finalized design is submitted for fabrication. Automated fault/failure

analysis techniques are needed to effectively evaluate alternatives in design tac-

tics and to aid in the synthesis of architectures that meet required fault-tolerant

specifications. A simulation approach can both evaluate the reliability of a chip

and determine its fault tolerance capabilities.

This thesis describes simulation approaches to conduct fault sensitivity and

wear-out failure analysis of VLSI systems. A simulation approach to study tran-

sient faults in VLSI systems is developed. Through simulated fault injection at

the device level and subsequent fault propagation at the gate, functional and

software levels, it is possible to identify critical bottlenecks in dependability.

A wear-out simulation environment is also developed to closely mimic

dynamic sequences of wear-out events in a device to localize the weak spot of a

target chip and to allow generation of Time-to-Failure (TTF) distribution of a

VLSI chip as a whole. First, an accurate simulation of a target chip and its appli-

cation code is performed to acquire trace data (real workload) on switch activity.

Then, using this switch-activity information, the wear-out of each component in

the chip is simulated using Monte Carlo techniques.

2

Section 1.1 presents the related research and motivates the simulation

approaches. Section 1.2. presents the approaches and impact of this work, and

Section 1.4 previews the organization of the rest of the thesis.

1.1. Related Research and Motivation

Research in the area of reliable and fault-tolerant design has been in progress

for some time. A vast variety of methods for error detection, correction, and

recovery have been proposed. Seldom, however, is the performance of these

schemes evaluated in a realistic operating environment. To justify the cost for

using a particular fault tolerance design implementation, it is necessary to exam-

ine the cost/benefit achieved by applying such a technique. This is especially

true in VLSI systems, where the speed and area constraints can impose severe

restrictions in designing for dependability. Although, in principle, such evalua-

tions can be performed analytically, the many simplifying assumptions required

tend to cast considerable doubt on the validity of the final design. The following

two subsections introduce the related research in transient and permanent fault-

analysis area, and motivate the necessity for the methodologies proposed in this

thesis.

1.1.1. Transient fault

Traditional reliability analysis methods provide an evaluation of the impact

of random failures in a system. Documented evidence has repeatedly shown that

the majority of system failures are transient in nature, i.e., not due to broken

parts. These transient faults can propagate and cause system failures by upsetting

3

program control flow or by propagating to the external environment via external

1/0 pins. Specifically, they can cause single or multiple upsets at the software

level and have to be quantified to effectively evaluate alternative design stra-

tegies. Further, the resulting fault models can form the basis for the evaluation

of an integrated system design in a hierarchical fashion. Hence, it is imperative

that methods and automated tools to analyze the impact of transients on VLSI

designs be developed.

An early study of failures in digital systems reported in [1] showed that

nearly 90 percent of failures were transient in nature. Studies using failure data

from IBM mainframes reported in [2] also showed that nearly 85 percent of

major system errors were transient in nature. Naturally, this has led to valid con-

cerns regarding the dependability of highly reliable systems. A particular source

of concern is the impact of transients which are rather common in avionic

environments.

Device Level: Device-level analysis of the mechanisms of transient upset has

been in progress for quite some time. The hazards of transient upsets in dynamic

RAMs were first reported in [3], where the behavior of alpha particle-induced

soft errors was explored. Several simulation techniques for modeling the

device-level effects of cosmic particle-induced transients have been developed

(e.g., [4] and [5]). In [4], a SPICE circuit with a current source is used to

represent the collected charges generated by alpha particles. An approximate

analytic solution which models a current transient is proposed in [6]. The model

includes parameters which represent the maximum current, the collection time

4

constant of the junction, and the time constant for initially establishing the ion

track. The proposed analytic solution is validated by comparison with other

computer models. In [5], a simulation technique for modeling the ion shunt

effect is described.

Physical Injection: Experiments aimed at error analysis through the physical

insertion of faults (via hardware or software) on the target hardware systems have

been performed by several investigators. In [7], results of fault-injection experi-

ments conducted on the fault tolerant multiprocessor (FTMP) are described. In

the experiments, the pin-level logic is perturbed to study fault impact on the error

detection and reconfiguration mechanisms. Experiments to study fault latency

through hardware fault injections (at the NASA AIRLAB testbed) are described

in [8] and [9]. More recently, in [10], a testbed facility to perform fault injec-

tions and to monitor the impact on a target system has been developed. The

facility was used to validate a computerized interlocking system for the French

railways.

Software Injection: Studies have also focused on software methods for

analysis and detection of transient upsets. In [11], a simulation experiment to

determine the efficiency of a number of error-detection mechanisms is reported.

In [12], three major categories of upsets are studied: changes in data, temporary

program divergence, and permanent jumps as a result of transients. Also, an

experimental system to demonstrate the transition from a normal to an upset state

is described. In [13], an approach to expose upsets in a computer system by

abstraction verification is proposed.. An assessment of different transient-error

"5

test methods for microprocessors is presented in [14]. In [15], transient faults

which result in steady-state failures are analyzed, and detection methods are

presented. In [16], new experiments to study fault and error latencies using

software techniques under varying workload conditions are discussed. Informa-

tion gathered from these studies shows that the data generated can provide con-

siderable insight into error manifestation.

Heavy Ion Radiation-Induced Injection: Several investigators have per-

formed physical-fault insertions by radiating target chips with various ion

sources. In [17], an analysis of the vulnerability of the Z80 microprocessor

based on ion-bombardment testing is described. Upsets are associated with the

machine cycle during which the errors first appear on the pins. Single event

upsets in the MC6809E microprocessor due to heavy-ion radiation were reported

in [18]. Several concurrent error-detection schemes for a microprocessor have

been evaluated by physical-radiation induced fault injection in [19]. A novel

method of inducing transients via heavy-ion radiation from a Ca252 source is

also described in [19]. The method is applied to a MC6809E microprocessor.

Recordings of the error behavior are used to characterize the errors, as well as to

determine coverage and latency, for several error detection schemes. These stu-

dies show that the data generated can provide considerable insight into both error

manifestation and fault impact.

The proposed hardware methods have several drawbacks. First, they offer

no feedback to the system designers and are useful only as validation methods

after the chip or system has already been built. Controlling the location and type

6

of fault injected is nearly impossible, and when faults are injected; monitoring

and analyzing their impact on the chip's faulty behavior is extremely difficult.

Simulation-Based Fault Injection: An important question not addressed in

the studies described is the propagation of transients from the device level

through the microprocessor functional units and pins. In addition to furthering

the knowledge of transient-fault propagation in microprocessors, this information

is crucial for defining the vulnerability of microprocessors to transients. Simula-

tion of fault propagation in an avionic microprocessor was conducted in [20]. In

[21] and [22], preliminary experiments to quantify the impact of transients from

the device to the pin level were described. Transients with low charge levels (0.5

pC - 4.0 pC) were injected. The ensuing logic upsets and first-order latch, and

pin errors were analyzed via analysis of variance methods. Recently, in [23], a

simulation model of the IBM PC was developed and injected with gate-level

transient faults. A general fault-prediction model based on instruction execution

was developed, along with a model of the resulting fault manifestations. The

detailed description of several important simulated-fault injection studies are

reported in [24]. Table 1 summarizes features and representative studies in

simulated-fault injections at different levels.

An important question that must be addressed is the propagation of tran-

sients from the device level through microprocessor functional units and pins.

This information is crucial for defining the vulnerability of microprocessors to

transients. Some of the key issues are: modeling of device-level transient faults,

simulation of error manifestation on a chip-wide scale, injection of a large

7

Table 1: Simulated-fault injection studies.

Category Electrical Level Logic Level Function Level

Approach Alter electrical current Inject stuck-at or inverted Inject faults to CPU

and voltage in circuits faults to logic gates memory,I/O devices,etc.

Target VLSI chip VLSI chip Computer system

Under Software running Computer system Network system

Study on the chip Software Software

Studies Fault simulation[25] BDX(26] Trace-driven[16]

HS16021211 BDX930[20] NEST[27]

FOCUS[22] IBM RT PC[23] DEPEND[28]

REACT[29]

number of faults to obtain statistically valid results, execution of test-software

sufficiently large to exercise a significant number of the circuit functions, and

monitoring of the fault impact.

1.1.2. Permanent fault

Among all of the IC technological trends, scaling has always been an impor-

tant method for reducing die size and thus increasing circuit performance and

complexity. Scaling of design layout rules can lead to increased electrical

stresses, and this in turn can accelerate the wear-out process. In this context, I

attempt to address wear-out-related permanent failures in VLSI systems in this

thesis.

In [30] the impact of device-dimension scaling on wear-out mechanisms is

discussed. Several methods have been proposed in the literature which discusses

specific wear-out/failure mechanisms.

8

Electromigration: An early investigation [31] of the electromigration pro-

cess shows that the mean time-to-failure (MTTF) of a conductor under a constant

current stress can be expressed by an empirical equation. The proposed (Black's)

equation is widely accepted and is used to model reliability of IC devices. The

equation is experimentally verified in [32] and [33]. Based on the model men-

tioned, a number of approaches to analyze and predict the reliability of ICs due

to electromigration failure mechanism have been proposed [34], [32] and [35].

In [34], D (average current density used in Black's equation) is obtained via cir-

cuit simulation, and Black's equation is used to predict device reliability. Chip

reliability is calculated assuming independent failure of nodes. The operational

MTTF for electromigration failures by extrapolating the results obtained via

accelerated testing is predicted [35].

All previous semiempirical methods rely on the generation of device reliabil-

ity to obtain MTTF for the system. It is possible to generate the system failure

distribution using the MTTF of each device. But this assumes that node failures

are independent, which may not be true in practice. Such methods cannot accu-

rately predict the variance and other characteristics of the distributions of a realia-

bility measure (e.g., TTF).

In [36] a physical experimental study to determine the device TTF due to

electromigration is described. The test circuits consisting of metal lines of vary-

ing lengths and widths were fabricated and tested under different current stresses.

A log-linear relationship was found between the TTF and operating voltage (or

fabrication-scale). In [37], an experiment to determine the MTTF due to

9

electromigration with pulsed, rectangular current applied at the metal line is

described.

A method using Monte Carlo simulation for electromigration is described in

138]. This approach starts from basic physical principles, such as the continuity

equation and diffusion laws, to drive simulation models built to mimic the

dynamic sequence of events in a modeled target device using Monte Carlo

method. In general, these techniques require a great amount of time and are not

easy to apply at the VLSI level.

Dielectric breakdown: That the time-dependent dielectric breakdown has

been one of the major failure mechanisms for MOS IC is pointed out in [39] and

[24]. A number of models to depict the breakdown mechanism of dielectrics are

proposed in [40] and [41]. Among the proposed mechanisms, charge-trapping

model in the oxide is commonly accepted as the major failure mode[40]. The

empirical equation used to describe this phenomenon is given in [32]. In [40], a

more elaborate empirical equation is derived to recognize the temperature depen-

dence of Tbd. Several reported experimental results with the theoretical model

are compared in [39].

There is considerable evidence to show that the failure rate of a system is a

dynamic function of the system activity. Statistical evidence shows that there is

an increased probability of failure of logic devices at higher activity levels [42],

[21] and [43]. To accurately predict the reliability of a complex circuit, switch-

ing behavior of each component and the subsequent effects must be comprehen-

0

10

sively modeled and analyzed. A methodology to locate areas or design features

that are susceptible to common wear-out/failure mechanisms must be developed.

In particular, the wear-out mechanisms involved in each device failure and their

effects at the system level are investigated and modeled. Apart from furthering

the knowledge of wear-out processes in microprocessors, this information is cru-

cial for further defining the vulnerability of microprocessors to common wear-out

mechanisms.

In our approach, accurate simulation of the target chip and its application

code, using a mixed-mode hierarchical simulator, SPLICE, is performed to

acquire trace data (real workload) on switch activity. Then, using this switch

activity information, wear-out of the entire chip is simulated using Monte Carlo

techniques. The wear-out mechanisms involved in each device failure and their

effects at the system level are quantified. Also, areas and design features that are

susceptible to common wear-out/failure mechanisms are located.

11

1.2. Approaches and Impact

1.2.1. Mixed-mode simulation

An effective way to evaluate a HW/SW design for reliability is to observe

the actual behavior of the design under faulty conditions. During the .design

phase, however, this evaluation is possible only through a simulation approach.

To accurately model the device-level faults and to simulate their manifestation at

the chip-wide scale, a mixed-mode simulation approach must be taken. A target

system must be simulated for a reasonable length under a realistic operating con-

dition, while device-level faults are injected in electrical-level analysis, such as

SPICE, and subsequent logic-level impact are propagated at the gate and higher

levels.

This thesis contains a hierarchical mixed-mode simulation approach for the

runtime injection of transients and for the tracing of their impact. A determina-

tion of the probability that a transient results in latch, pin or functional errors can

be made. The approach also allows quantification of the impact of transient

hardware errors at the software execution level.

Faults are injected at runtime, at the transistor level, and their propagation to

the I/O pins is monitored and analyzed. The type of functional errors which can

result from transients is determined. To isolate the critical paths in the circuit,

the fault propagation between the functional units and the external pins is

quantified. In particular, the mechanisms involved in internal propagation of

latch errors and their effects at the pin-level are investigated.

12

The approach is illustrated with a case study of the impact of transient errors

on a microprocessor used in jet engine. The chip's vulnerability to transients is

quantified. For each functional unit, the transient-induced error distribution at the

external pins is determined. A state transition model is constructed to describe

the error propagation between the microprocessor functional units and the subse-

quent distributions at the I/O pins. The model is used to identify and isolate the

critical fault propagation paths, the functional units which are most sensitive to

fault propagation and having the highest potential of causing external pin errors.

An empirical model to depict the process of error explosion and degenera-

tion in the target system is derived. The model shows that, if no latch errors

occur within eight clock cycles, no significant damage is probable. Thus, the

overall impact of a transient is well contained. A state transition model is

derived from the measured data to describe the error-propagation characteristics

within the chip and to quantify the impact of transients on the chip's external

environment. The model is used to identify and isolate the critical fault-

propagation paths, the module most sensitive to fault propagation and the module

with the highest potential of causing external pin errors.

1.2.2. Fault-dictionary approach

Mixed-mode simulation requires a large amount of both processing power

and storage space. We must be able to perform near-exhaustive fault sidiulations

necessary to obtain a valid fault sensitivity analysis. Thus, we developed a

fault-injection methodology, based on a look-up table (fault dictionary) that

13

contains device-level fault-behavior patterns, for a fast logic-level fault simulator.

The fault-dictionary approach is a method to reduce the time requirement for

simulation of a massive number of device-level transient faults. A device-level

fault-behavior dictionary, for logic-level fault injections, is generated from exten-

sive circuit-level fault simulation with SPICE. Fault injection locations and the

gates around those locations are extracted and evaluated with SPICE. The

extracted subcircuits are exercised with exhaustive combinations of inputs while

fault injections are performed. Faulty behavior at the outputs for each subcircuit

is recorded in the dictionary according the subcircuit's input vector, fault-

injection time, and location. The generated dictionary can be used to inject, in

runtime, the logical error pattern on the target design. Concurrent simulation can

be performed using the fault-behavior dictionary approach to allow simultaneous

evaluation of a great number of faults in single simulation pass. The fault-

dictionary approach is illustrated by a case study of a MC68000 microprocessor.

1.2.3. Coincidental fault analysis

An approach intended to investigate critical aspects of such designs from a

fault-tolerance viewpoint is also developed. The method is illustrated using an

example of a fault-tolerant jet engine controller. In particular, the digital aspects

of the dual-channel controller, described at the logic and functional levels, are

simulated, and transient fault injections are performed. The coverage of the dual

technique to tolerate single and mul.tiple transients is evaluated.

14

In the simulated controller, fault' detection and reconfiguration are performed

through transactions over communication links. Instructions specifically

designed to exercise this cross-channel communication are executed. The simu-

lated fault-injection approach is illustrated by measuring the level of effectiveness

of the dual configuration to transient errors. The results show that none of the

single injections affects more than one channel, while approximately 12 percent

of the multiple injections affects both channels.

1.2.4. Program upset analysis

Another important question that must be addressed is the propagation of

faults from the device level through the microprocessor functions and the subse-

quent impact on the application software that is executing on the chip. No study

that combines hardware and software fault behavior analysis has been reported.

Also, modeling of software upset is necessary for high-level design evaluation.

Faulty behavior of the software under a fault condition should be quantified and

modeled.

A transient fault can be activated and propagated to corrupt logic values in

latches in its propagation path. Once a fault propagates to a latch (i.e., latch

error) it can either relatch, propagate out to the external 1/O pins and/or disappear

in each clock cycle. Once an error is present in the hardware, there is a chance

that values at data or address registers/buses can become corrupted.

15

Software(program-flow level) upset could occur when one or more of those

values are corrupted, e.g., the program could jump to a wrong address or the pro-

gram result could be incorrect.

A systematic approach to quantifying the program-flow-level upset sensi-

tivity of VLSI designs is required. The types of upsets which can result from

fault injections must be determined because an error in the program counter

register can cause a program-flow deviation. The mechanism involved in error

propagation within a chip and the effect at the program-flow level has to be

investigated. Also, the analysis shows that there is a significant chance of multi-

ple software upsets occurring. Multiple program upset occurs since the erroneous

values can propagate on fanout paths to multiple locations on the chip. The

results suggest that present methods of validation that assume single upsets may

be inadequate.

This thesis contains methodologies for integrating and exporting the

quantifiable fault/error-sensitivity measures to the system-level analysis. In the

proposed experimental approach, determination of the error characteristics at the

software level can be performed. The real-time characterization of these meas-

ures can be incorporated into system-level analysis where other higher-level

dependability analysis can be performed using tools like DEPEND [28]. The

impact of faults on system functionality, particularly the quantification of faulty

behavior at the program-flow level, is a central consideration.

16

1.2.5. Monte Carlo wear-out simulation

To effectively evaluate a long-term reliability, a method for predicting per-

manent faults in VLSI designs is required. An approach that combines the

switch-level circuit simulation and the device-level Monte Carlo simulation to

achieve realistic reliability assessment is presented in this thesis. A target system

is first simulated at the switch level, and trace data on switching activity is col-

lected. This trace data is then used along with Monte Carlo simulation to model

wear out at the device level, due to different failure mechanisms. The proposed

approach currently supports two failure mechanisms: electromigration and gate

oxide breakdown. The Monte Carlo analysis uses importance sampling to reduce

the run lengths. The key advantage of this approach is that it can closely mimic

dynamic sequences of events in a device through time for the specified failure

mechanism(s). The technique can localize weak location/aspect of target chip,

and can generate the TTF distribution of a VLSI chip as a whole, based on traces

from circuit simulation using actual application codes and under realistic operat-

ing conditions.

The use of this approach for evaluating the reliability of a design is illus-

trated with a case study of the HS 1602 microprocessor. The simulation analysis

is performed under varying operating environments and fabrication-technology

parameters. In particular, operating voltage, temperature and the device dimen-

sion are varied, and the reliability impact of reduced dimension and technology

improvements are quantified. The method is illustrated by using it to predict the

TTF characteristics of a microprocessor chip in a typical operating environment.

17

1.3. Thesis Organization

This thesis is organized as follows. Chapter 2 describes the target systems

used to illustrated the methodologies developed to study fault propagation, fault

sensitivity analysis and wear-out failure analysis. Chapter 3 presents the

transient-fault impact analysis. The mixed-mode approach to performing various

fault-sensitivity analysis is described, and the fault-dictionary-based approach to

performing ultrafast transient-fault simulation is given. The target systems

described in Chapter 2 are used to illustrate various proposed analyses. Chapter

4 contains the validation of the mixed-mode simulation model for transients and

the comparison study to show that there is a stastically significant difference

between the accurate device-level model and the often-assumed abstract logic-

level fault model. Chapter 5 presents a correlated fault-injection experiment

aimed at studying the fault-tolerant features of the target system. Chapter 6

describes software upset analysis. The propagation of faults from the device

level through the microprocessor functions and the subsequent impact on the

application software that is executing on the chip is studied. Chapter 7 presents

the fault-dictionary approach that allows fault-sensitivity analysis of VLSI

designs via device-level current-transient injection, logic-level fault propagation

and monitoring of the fault impact. The approach combines electrical-level cir-

cuit simulation to generate device-level fault-dictionary and gate-level concurrent

fault simulation to simulate a large number of faults rapidly. Chapter 8 presents

a methodology to locate areas or design features that are susceptible to common

wear-out/failure mechanisms. In particular, the wear-out mechanisms involved in

18

each device failure and their effects at the system level have to be investigated

and modeled. The last chapter summarizes the work presented in this thesis and

gives directions for future research in the area.

19

CHAPTER 2.

TARGET SYSTEMS

2.1. HS1602 16-bit Microprocessor

The first of the three target systems for our study is a microprocessor used

for real-time control of jet-engine functions. The system is presently used in

commercial aircraft, including the BOEING-747 and the 757. The controller

(EEC131, manufactured by Hamilton Standard), which is the next target system,

has two channels; the processing elements of both channels are identical. The

system has a real-time reconfiguration mechanism wherein the lead channel stops

its usual operation on detecting a fault and transfers control to the dual channel.

The system incorporates a variety of fault-tolerant design features at different lev-

els including software checks, parity checks, memory test and error counting.

The control system samples engine parameters such as the fuel flow, the

temperature, the engine speed and other external inputs such as air speed and

positional parameters. The sampled parameters are digitized and updated into the

RAM approximately every millisecond for further processing. The controller

also reads pilot inputs (from the throttle and various switches) into a RAM work

area and calculates the desired control functions. The calculated functions are

used to drive display indicators and to control the engine. The equations describ-

ing the control functions are programmed in the application code which resides in

EPROMs.

20

The control system architecture thus contains microprocessors, memory

units, 1/0 gate array chips, communication channels, frequency samplers, A/D

converters and D/A converters. In this experiment, the microprocessor and its

associated memory were simulated with a focus on the impact of transient errors.

The 16-bit HS1602 microprocessor (Figure 1), which is the heart of the con-

troller, consists of six major functional units. The arithmetic logic unit (ALU),

which contains six registers, can perform double precision arithmetic operations.

The control unit, which is responsible for issuing signals to control the operations

of the ALU, is made up of combinational logic and several registers. The

decoder unit decodes I/O signals, the multiplexor unit provides the discrete lines

ITiming art

I BusCountdown

Addr Contro Ptty
Control

ALU Disc

Watchdog
......... Bus......

Io
Memory Latch
Decode UART

MUX

Latch
Disc

,Statue
•

Figure 1: Data flow diagram of HS 1602.

21

and buses, and the countdown unit is used to drive chip-wide clock signals. The

watchdog unit provides protection against faults by resetting the processor in the

event of a parity error or in the event when the application software is timed out

by the software sanity timer. The signal to synchronize the dual system is also

provided by this unit. The chip runs at 6 MHz and is implemented in a 3-p. tech-

nology CMOS gate array made of 2688 blocks of 4 N-channel and 4 P-channel

transistors.

2.2. EEC131 Jet-Engine Controller

The second target system in our study is a microprocessor-based, dual-

channel controller for real-time control of jet-engine functions. The fault toler-

ance achieved by the redundant design is tested in the Section 6. The system

processes data obtained from dedicated engine sensors to provide several func-

tions, such as automatic thrust control, engine-limit protection, engine-transient

control, engine fuel and oil temperature management and thrust reverser control.

The digital system architecture (Figure 2) contains microprocessors, buses,

memory units, 1/O processors, asynchronous serial communication links, fre-

quency samplers and A/D converters.

The controller has two independent channels, referred to as channel A and

channel B, each consisting of a microprocessor chip. The I/O configuration of

the hardware is identicdl for both channels, with the exception of the following

three control loops: the turbine-cooling air loop and a thermatic rotor-control

loop assigned only to channel A, and another thermatic rotor-control loop

a

22

EXTERNAL PARAMETERS......,...
F/D ARINC ARING F/DA/ serial - serial

comm comm.

IIO1 IIO1

1/0 processor 1/0 processor

Channel A I Channel B
CPUCP

R1 RI
R2 R2

ROM,-
* - - ~EEPROM...

EEPROM, o - --

* .-- RAM RAMV

MUX and CONTROL LAW

Figure 2: EEC 131 jet-engine controller.

assigned only to channel B. All other functional loops have redundant imple-

mentations and can be controlled by either channel. In each channel, input infor-

mation (e.g., temperature, test and drift signals, resolver inputs, transducer inputs,

torque motor wraparounds, rotor speeds, pressures and test signals) is first digi-

tized by two on-board frequency samplers and an AID converter. This digitized

input data (a single word) is then stored in the channel CPU register Rl. The

digitized data in channel A is sent to channel B via a serial communication link

and stored in CPU register R2 of channel B. Similarly, the data in RlI in channel

23

B is sent to register R2 in channel A. In each channel, a logic comparison of the

contents of registers R1 and R2 is made. If the comparison fails, a range test,

which compares the data in R1 and R2 with the range information recorded in

the ROM for the particular input variable, is performed. The content of the

register within range is then used for continued processing. If both the data in

R1 and R2 are out of range (multiple failure), the control signal (output) is syn-

thesized from the other parameters and from previous engine states recorded in

the EEROM. In cases of sustained multiple failures, a background test routine

identifies the failed channel and transfers the engine control to the working chan-

nel.

The ability to detect faults and reconfigure a system through comparisons

and range tests of critical input data is the main fault-tolerant aspect of the con-

troller. In our experiment, a single-channel functional error is assumed to occur

if the injected transient alters the contents of either CPU registers R1 or R2 in a

single channel. A dual-channel functional error is defined as an event in which

the contents of CPU registers RI and R2 are faulty in both channels. This event

would require the invocation of the next level of protection.

2.3. MC68000 Microprocessor

The third target system analyzed in our study is Motorola's MC68000

general-purpose microprocessor. The MC68000 architecture is comprised of a

16-bit data bus and 24-bit address bus. It can directly access 16 megabytes of

memory and has 16 32-bit general purpose registers, a 32-bit program counter,

24

and an 8-bit condition code register. The first eight registers are used as data

registers for byte(8-bit), word(16-bit), and long word(32-bit) operations. The

second set of seven registers and the stack pointer may be used as software stack

pointers and base address registers. In addition, the address registers may be

used for word and long word operations. All of the 16 registers may be used as

index registers. The details of the microprocessor are described in [44].

25

CHAPTER 3.

TRANSIENT FAULT IMPACT ANALSYS

3.1. Mixed-Mode Simulation Approach

The mixed-mode simulation approach allows fault-sensitivity analysis of

VLSI designs through simulation. A mixed-mode hierarchical simulation of

VLSI systems can be performed, with runtime-fault injection, for a range of

user-specified faults. Fault injections occur at the device level, and fault propa-

gation is studied at the gate and higher level. Figure 3 depicts the overall experi-

mental approach. The approach takes as input a netlist of the hardware descrip-

tion of the system and converts it into a simulation model1. SPLICE is used as

the simulation engine.

The fault injection process is implemented as a runtime modification of the

circuit, whereby a current source is added to a target node,2 which alters the vol-

tage level of the node over the time interval of the injected-current waveform.

The experimental approach allows both transient and permanent (single or multi-

ple) fault injections, although the thrust of the present work is on transients.

Since the injected-current source is specified as a mathematical function, the

resulting transients can be of varying shapes and durations. For example, electri-

cal power surge, in-chip alpha-particle intervention, lightning, and bridging faults

'Hardware description (netlist) in various formats(e.g., Tektronics. Hamilton Standard) can be translated into the BLT
simulation model description which is recognized by SPLICE.

2A node is defined as a point in a conductive interconnection between electrical and/or logical elements.

26

I TARGET SYSTEM
DESCRIPTION

MIXED-MODE HIERARCIAIFAULT DESCRIPTION FAULT SIMULATION
TYPE OF FAULT

TRANSIENT/STUCK-AT
LOCATION/TIME

*_AUTOMATIC FAULT INJECTION

TRACE

GRAPHICAL ANALYSIS IMPACT ANALYSIS

VISUAL IDENTIFICATIONS
STATISTICAL ANALYSISERROR PROPAGATION

MANIFESTATION DESIGN FEEDBACK

Figure 3: The mixed-mode simulation approach.

can be modeled. The user can control the location of a fault, the time and dura-

tion of a fault, and the shape of the current source.

The tracing facility monitors all switching activities in the target system,

including fault propagation through each gate or transistor, for all processed

events. The trace data for each event consists of the time of the event, the

hierarchical node name, and the new and previous voltage levels (for electrical

nodes), or the new and previous logic levels and their strengths (for logic nodes).

27

The graphical analysis facility is used to visualize the error activity in

different functional units of the processor and the fault propagation on the major

interconnects and at the external pins. In the usual case, the preprocessed error

data from the fault simulations form the input to the graphical program, which

allows accelerated viewing of the impact of the injected transient. The propaga-

tion path of an injected transient is traced on screen by a red blip through various

internal modules and external pins. The fault-sensitive functional unit (originally

represented in blue) gradually becomes yellow, then red. After each

injection/simulation run, the statistical distributions of the latch and pin error

characteristics and the fault propagation are calculated and displayed.

Quite apart from the obvious advantage of visualization, the specific design

advantage of this approach is that it allows fast identification of vulnerable units

even prior to obtaining a detailed quantification. For example, in the target sys-

tem discussed in the following section, the graphical results show that the watch-

dog unit, a critical component, was a major source of error propagation, even

though very few errors did indeed affect the unit itself. Without the display, such

a result would require considerable analysis. The details of the graphical analysis

facility are described in [22].

The statistical analysis tools provide impact analysis of the target system

and generate the models necessary to depict the fault behavior in the system (e.g.,

I/O pin error distribution, latch error distribution, and internal fault-propagation

model).

28

3.1.1. Simulation environment

The electrical analysis in SPLICE1 [45] is based on the method of Iterated

Timing Analysis(ITA). This technique incorporates a nonlinear relaxation

method together with event-driven selective tracing. ITA has been shown to be

as accurate as SPICE2 (assuming identical device models) and can provide a

speedup of up to two orders of magnitude. The logic analysis in SPLICE1 is

performed by using a relaxation-based method that uses MOS-oriented models.

Virtually unlimited levels of signal strength can be associated with each of the

logic values in order to further enhance accuracy. This approach allows a

correspondence between the electrical output conductance and the logic output

strength. By using a fanout-dependent delay model, which is capable of handling

first-order effects, accurate delay handling is achieved.

Figure 4 shows how fault injection was incorporated into the mixed-mode

simulation. Initially, the circuit-model description is read and modified by

adding a current source at the fault injection node. During each iteration, the

scheduled node events in the current time step (virtual simulation time) are pro-

cessed, and new events are scheduled and queued in the event list. For each

fanin element in the processed node, the element type (electrical, switch-level,

logical) is determined.

If the element type is electrical, then additional analysis (see Electrical

Analysis in Figure 4) is performed to determine if the node is an injection site

(i.e., analog signals are dealt with). If the node is an injection site and if the

29

READ FAULT INJECTION FILE READ CIRCUIT DESCRIPTION &

SIMULATION SPECIFICATION

Begin Simulation

(scheduled node change events in the time queue)I

WHILE
EXIT

eAt each time step schedule fault injection nodes

sut list in the for the current timen

Ca lcultenew in the fanout list e

...................... FOe iRfth le e t

................................ ... FO ~R

Calculat j e new node volage

D r efELECTRICAL, Oeh
"M - q injection current function -.-........ a

Figure4:tFaultcinjectinurrent sumg
(Isum)

[current slum (Isum= 0

[Sum of Conductance (Gsum)= 0

vt sm t t i n node k of element j er

Gsum += equivalent conductance at node K

Isum = rsum + total current flowing into node K a
Calculate new change in voltage for this iteratior•
Calculate new node voltage]
Determine if node has converged|

Figure 4: Fault injection algorithm.

virtual-simulation time is within the fault-injection time window (the time period

between fault-injection time t and t + dt, where dt is duration of the fault), the

current source representing the transient is activated, and additional current is

30

added to the total current calculation. The additional current value is determined

from a function representing the current source for the particular virtual-

simulation time. The total current is used to calculate fault voltage level at the

processed node. The actual design parameters of a VLSI circuit and the capaci-

tances extracted from the circuit layout can be used in the electrical-level

analysis. The specific waveforms used in the transient-fault simulations follow

the double-exponential function proposed in [6].

I(t) = ý [e - MCC -- e - to]

where ý is the approximate maximum current, a is the collection time constant

for the junction and P3 is the ion track establishment time constant. This function

depicts the current-transient response for an ion-particle penetration of a diffusion

area.

In the simulations, the gates around the region of the fault injection are

simulated at the electrical level, and the rest of the processor is simulated at the

logical level, as shown in Figure 5. A simple CMOS AND gate with buffered

output is illustrated in the figure. The dotted boxes indicate normal voltage

waveforms for the circuit, and the dashed boxes contain waveforms resulting

from a transient injection at the location marked by X. Note that waveforms

within the electrical-level analysis behave in an analog fashion but are discrete in

the logic-level analysis.

31

LOGIC-LEVEL ANALYSIS ELECTRICAL-LEVEL ANALYSIS I LOGIC-
LEVEL
ANALYSIS

Vcc Vcc

a.i. ..- . --
...... .. . J

'Fault Injection'

* NORMAL WAVEFORM

L- .. WAVEFORM DUE TO FAULT INJECTION

Figure 5: Fault injection - electrical to logic level.

3.1.2. Fault/error analysis

Recall that the tracing facility is capable of monitoring each node. The error

data for the analysis are generated by comparing each faulted simulation with a

fault-free simulation. An error is assumed to occur if the injected transient

caused the node voltage to vary beyond a defined-logic threshold. For each

simulation, the recorded data include the time of fault occurrence, the location of

fault, the faulted value, and the fault-free value. Each fault event is also

classified as either a timing error (premature or late firing) or a value error.

Statistics are collected on the fault injections that result in a voltage transient

large enough to produce latch and pin errors and errors at the interconnections of

32

the functional units. A latch or pin error is assumed to occur when an erroneous

value is detected at the output of a latch or pin. Statistics on errors altering the

processor functions are also collected. The collected statistics are classified by

the charge level and by the location.

3.1.3. Statisitical analysis environment

The statistical analysis environment quantifies the fault sensitivity of the

chip by evaluating a number of measures. Analysis of the the error data is per-

formed to determine the effects of different charge levels on the injected tran-

sients, and on the severity of latch, pin and functional errors. Models to depict

error propagation both within the chip and to the external environment are

derived. The following terminology is used in the analysis.

1.) Latch errors: fault injections which result in voltage transients that cause

errors in latch outputs.

2.) Pin errors: fault injections which result in voltage transients that cause

errors at the chips I/O pins.

3.) Functional errors: fault injections which result in altering the output control

functions of the processor, e.g., an error resulting in a faulty write-enable

signal.

33

4.) First order error: an error which occurs during the first clock cycle follow-

ing a transient fault.

5.) Second and higher order errors: errors that occur during the second and sub-

sequent clock cycles. 3

Figure 6 summarizes the analysis performed. The statistical analysis pro-

vides measures of the severity of the errors resulting from the injected transient.

The probabilities of latch, pin and functional errors are calculated. External pin-

error distributions resulting from transients in the different functional units are

obtained. Charge threshold for the different error types are also determined.

The data are used to construct two types of fault-propagation models. First,

an overall view of fault propagation is provided by generating an empirical

model to depict the process of error explosion and degeneration within the chip

and to the external environment. Next, a state-transition model to quantify the

probabilities of internal module-to-module latch-error propagation and subsequent

propagation to the external environment is derived. A latch error can either be

relatched, can propagate out to the 1/0 pins and/or can disappear during each

clock cycle. Error explosion occurs if the erroneous values propagate on fanout

paths to multiple locations on the chip. Fault propagation usually occurs because

errors can get latched and then migrate to different sections of the chip. A latch

Transients modeled in the experiment last no longer than one clock cycle. Thus, no latch-error can occur directly from an
injection after the first clock cycle. This is typical of effects of cosmic-rays and the like.

A

34

MEASUREMENTS

STATISTICS EMPIRICAL MODELS

Transient-Fault Severity

Latch Errors
Pin Errors Error-Propagation ModelPuciona Errors
Functional Errors EXPLOSION/DEGENERATION

Sec. 3.2.5(a). -Dynamic Behavior

External Pin Error Distribution of Internal Latch Errors

Due to In-Chip Transients Sec. 3.2.6(a)

-Error SIGNATURE
Sec. 3.2.5(b)

State-Transition Model

Transient Charge-Level Analysis -In-ChiPsecError3..6bPropagationj

Charge Threshold of ErrorsS

Sec. 3.2.5(c)

Figure 6: The analysis environment

error can stay undetected until it migrates to the pins at a later time. The addi-

tional internal propagation between latches can increase the probability of gen-

erating functional errors. Thus a characterization of the latch-to-latch fault-

propagation patterns is important. The detailed methodology of the analysis is

illustrated by the case study in the next section.

35

3.1.4. Experiment

The HS1602 microprocessor was used to demonstrate the mixed-simulation

approach. Nearly 80 instruction cycles (90300 nsec) of the application code were

executed on the target system during each simulation period. Simulation resolu-

tion was 1 nsec or less. The suite of application codes was carefully selected to

ensure that all of the functional units were exercised. Each fault-injection simu-

lation run took on the average two hours on a SUN 3/50 workstation. A total of

2100 simulations (lasting about three weeks) were performed. The figure 2100

represents the number of simulations required to obtain stable results. Increasing

the number of fault injections beyond this value did not significantly change the

nature of our results. During the simulation all the nodes (including all latches

and external 1/0 pins) in the circuit were monitored and processed.

To establish simulation accuracy, a fault-free simulation run was compared

with the operation of the actual hardware unit. Two comparisons were made.

The first verifies the correct flow and execution of instructions by monitoring

data, address, and control lines during the times that these lines are

stable(logically valid). Correct execution flow was observed for the entire simu-

lation period. The second comparison, which is more rigorous, monitors all

changes in logical values, including transition times. This comparison reveals the

electrical characteristics of the simulation, such as propagation delay, race condi-

tions and gate loading. The result showed that the change in the logical values

for both the hardware unit and the simulated model are identical, but the times of

the transitions are slightly skewed. The timing skew was due to the variance of

36

several design parameters. Gate delay, for example, is specified as minimum,

typical, and maximum delay time. A normalization was needed, because the

actual system runs at 12.08 MHz and the simulation was set at 82 nsec per clock

cycle (12.195122 MHz).

3.1.5. Results

This subsection provides a detailed illustration of the analysis methodology

using the actual results for the target system. The impact of transients at the

latch, pin and functional levels are determined. Also, the charge-level impact and

1/0 pin-error distribution are investigated, and empirical models of fault propaga-

tion are derived from the data. These results provide an overview of the fault

propagation within the chip, and as such give a general evaluation of the fault

sensitivity of the design.

3.1.5(a). Transient fault severity

Table 2 summarizes the overall impact of transients in the range 0.5 to 9.0

pC. 4 In the table, a first-order error is defined as one which occurs during the first

clock cycle following a transient-fault injection; second- and higher-order errors

are those occurring during the second and subsequent clock cycles. 5 The second

column shows the number of fault injections that result in errors. The third
4The charge levels chosen represent transient response of various heavy ions including 100 MeV Fe ions, which are

commonly found in the cosmic environment [46]. These levels were chosen to ensure that no permanent errors occur. Charge levels
approximately greater than 10 pC are known to cause permanent latch ups (device failure)[47].

5Transients modeled in the experiment last no longer than one clock cycle. Thus. no latch error can occur from direct
propagation after the first clock cycle. This is typical of effects of cosmic rays and the like.

37

column shows the total number of resultant errors, and the fourth column shows

the 90 percent confidence interval.6 For example, out of 2100 fault injections,

one or more first-order latch errors occurred in 470 cases (22.4 percent), and a

total of 2149 latch errors were observed.

Table 2: Transient fault severity.

Type Occurrences Total Error # Percentage 90% C.L

Injected Transients 21M(X) 1(0%

Frst-Order Latch Errors 470 2149 22.4% 21.93%-22.82%

Second-and Higher-Order Latch Errors 120 1829 5.7%

First-Order Pin Errors 255 1168 12.1% 12.09%-12.19%

Second-and Higher-Order Pin Errors 90 839 4.3%

Functional Errors 193 747 9.2% 9.16%-9.22%

A number of issues relating to the fault sensitivity of the chip are

highlighted by data. First, they show that over 20 percent of the injections result

in latch errors. Given that a transient results in a latch error, the chance of multi-

ple errors is high (an average of four latch errors per transient). The existence of

such multiple latch errors is potentially a serious problem, since these errors can

subsequently propagate to the pins and lead to multiple failures.

In addition, even though only 25 percent (120 out of 470) of the latch errors

propagated past the first clock cycle (i.e., the first order), each such propagation

can result, on the average, in about 15 latch errors, thus further intensifying the

SThe probabilities of failure of each independent trial(fault injection) is p, and thus random variable X (error occurrences) has

binomial probability distribution with n = 2100. p = p, and q = I - p. X for first-order latch error in our experiment is 470. Thus
estimation of ý is 0.224 (= [number of first-order latch errorsl/[number of fault injections]). Since n is sufficiently large (n = 2100),
the probability density function of X can be approximated with a normal distribution with (gt = np = 470.00, a2 = np(I-p) = 364.72).
We estimated 90 percent confidence limits of p, by normal distribution.

38

propagation problem. An effect of second- and higher-order latch errors is an

increase in the probability of functional errors (erroneous control signals or data

which result in an alteration of the microprocessor functions).

There is almost a ten percent chance of having functional errors. Over one-

third of the total number of functional errors were due to transients in the ALU.

Further analysis of the error data showed that a significant number of functional

errors due to transients in the ALU were due to first-order effect because tran-

sients that latch directly on the ALU registers result in an immediate alteration of

address or data information. Functional errors caused by second- and higher-

order effects of transients were more dispersed among different functional units.

A relationship between the second- and higher-order latch errors and functional

errors is discussed further in subsection 3.1.5(c).

Table 2 shows that the percentage of first-order pin error occurrences is

significant (over ten percent). Given a pin error, the chance of recurrence during

the subsequent clock cycles is relatively high (90 out of 255) and each propaga-

tion can result, on the average, in approximately nine pin errors. In comparison,

there are approximately four pin errors resulting from the first-order propagation.

3.1.5(b). External pin error distribution

This subsection quantifies the impact of within-chip transients on the exter-

nal environment through I/O pins. Three examples of the error-probability pat-

tern at the external I/O pins are shown in Figure 7. Note that transients at each

39

Pin Name MULTIPLEXOR ALU DECODER
hI wterl

.sleni
m•nt

SI
ujsi

I
is

0.00 0.10 0.0 .3 04 0.000.10 0.20 0.30 0.40 0.00 0.10 0.20

Probability of Error

functional unit have a unique pin error pattern. For example, the probability of

having a pin error due to a transient in the ALU is generally larger than in the

other two units shown. Also, transients in the ALU are likely to involve more

I/O pins than the other units.

Overall, each functional unit produced a unique signature symptomatic of a

transient in that unit. A possible application of such patterns is to use them as

error signatures in integrated hardware testing.

40

The error signatures can be used to insert realistic error patterns to study the

impact of different with-in chip failures at the board and higher levels.

3.1.5(c). Charge level analysis

Statistical analysis of the the error data was performed to determine the

effect of different charge levels in the injected transients on the severity of latch,

pin and functional errors. Figure 8 shows the frequencies of latch, pin and func-

tional errors as functions of the charge level in the injected transients. Note that

beyond 7 pC, the number of error occurrences remains relatively constant; that is,

an additional charge does not result in an increase in the error probability. At

this charge level essentially all the latches in the propagation path have been

affected.

100

-- ----- First Level Latched Error
80 First Level Pin Error

Functional Error - -- - .

60-

Frequency- - "-
4 0 - . o....

40

20

0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Charge Level (pC)

Figure 8: Error frequency by charge level.

41

For latch and pin errors, there is a charge threshold of 2 pC at which a sharp

increase in error activity occurs. Over 95 percent of the latch errors occurred at

charge levels greater than 2 pC, and 100 percent of the pin errors were observed

for charges at or above 2 pC. For functional errors, however, the threshold is not

so well defined, which is probably due to the fact that functional errors can also

result from second- and higher-order latch errors (in addition to being caused by

the first-order effect of a transient). The higher-order effects, of course, are not

charge dependent, hence a charge threshold does not occur. Figure 9 shows the

frequency of second- and higher-order latch errors and the functional upsets.

Note that the frequency of the second- and higher-order latch errors also lacks the

distinctive charge threshold.

Figure 10 shows, for each functional unit, the first-order latch and pin error

distributions by the charge level in injected transients. For charge levels above

100

----------Second Order Latched Error
80 Functional Error

60

Friquency

40

20 - - - - - - - -

0 I I I I I I I
0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Charge Level (pC)

Figure 9: Second-order and functional errors.

42

ALU

--- Latched
20 .110pi -.... - - -pin

Frequency

10 -.....

010
... • - r I I I I I

0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Charge Level (pC)

Control

--- Latched
20 0..... /O pin

Frequency 1..
.'.--...- -. - -

10 . ---I "

0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Charge Level (pC)

Countdown

--- Latched
20 .0..... /0 pin

Frequency
10

0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Charge Level (pC)

Decoder

7-- Latched
20 1/0pin

Frequency
10O

10
0 I -.•""- -

0 1" t Li i; :. iý ' I I
0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Charge Level (pC)

Figure 10: Error distribution by charge level.

43

Multiplexor

- - - Latched
20 . U..... /0 pin

Frequency
10

o1 I 1 1 I I I
0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Charge Level (pC)

Watchdog

Latched

20 .p..... 10 pin"

Frequency
°10

sS ~ . •.........•.....

I I I
0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Charge Level (pC)

Figure 10: Error distribution by charge level (continued).

the threshold, the ALU and the watchdog units have the highest probability.

The watchdog unit had high latch error occurrences, but pin errors occurred

only for charges above 6 pC. The reason is that, although an error can quite

easily be latched in the numerous feedback paths in the watchdog, it does not

propagate to the external pins. The decoder unit showed a relatively low pin

error propagation probability.

The chance of transients below the threshold being latched is generally

small, except for those in the control unit. In the control unit, the possibility of

having latch errors is high, even at 2 pC and 3 pC. The relatively small capaci-

tive loading of the feedback paths to the latches in the control circuit explains

44

this low charge. The relatively small capacitive loading of the feedback paths to

the latches in the control circuit explains this low charge sensitivity.

As shown in Figure 10, the multiplexor does not have any latch or pin

errors, because the electrical nodes in the multiplexor unit have high capacitances

due to their large number of fanouts.

3.1.6. Empirical models

Fault propagation usually occurs because errors can be latched and then can

migrate to different sections of the chip. A latch error can stay latent and

undetected until it migrates to the pins at a later time. The additional internal

propagation between latches can increase the probability of generating functional

upsets. Thus, a characterization of the latch-to-latch fault propagation patterns is

important. A latch error can either relatch, propagate out to the 1/O pins and/or

disappear in each clock cycle.

3.1.6(a). Error propagation model

The propagation of the latch errors in time (in clock cycles) for the control

unit is illustrated in Figure 11. In this figure, the x-axis represents the clock

cycles from the fault injection time, and the y-axis represents the total latch error

count for each clock cycle. It can be seen that, given a certain number of latch

errors in the first clock cycle, the number of latch errors degenerates significantly

until the fourth clock cycle. At approximately the fifth clock cycle, the number

45

-Latched Errors

300

200
Frequency

100

0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Time (Clock Cycles)

Figure 11: Latch errors in time.

of errors rapidly multiplies. Thus, despite the fact that the latch errors last until

the fifth clock cycle on only a few occasions, when they do last, the number of

errors is large, which occurs because at this time period, the error signal enters a

unit with a large number of latches and high fanout, e.g., the ALU registers.

After the sixth cycle, the number of errors degenerates significantly until it finally

disappears after the eighth cycle. Thus, the impact of latch errors lasts at the

most up to eight clock cycles from the time of fault injection.

For analysis purposes, the clock cycles in which the number of latch errors

increases in comparison with the previous cycle are defined as error explosion

cycles. Clock cycles in which the number of errors decreases in comparison with

the previous cycle are defined as error degeneration cycles. In Figure 11, an

error explosion occurs in the fifth clock cycle. The chance of functional errors

and pin errors occurring may be maximal during this period of error explosion.

In the sixth clock cycle (a degeneration cycle), the number of latch errors

decreases to about one-third of the number in the fifth clock cycle.

46

A model depicting the process of error explosion and degeneration that

result from a transient fault for the overall system is shown in Figure 12. The

model is derived by averaging the results obtained for all the injected faults. As

illustrated in the model, an injected fault either becomes latched (represented by

latch-error state) or has no impact on the circuit (represented by fault-free state).

The explosion state represents the situation where the number of latch errors in

the current clock cycle is greater than that in the previous cycle. The degenera-

tion state represents the opposite scenario, i.e., the number of latch errors

decreases. In each clock cycle (either the degeneration or the explosion state),

the number of latch errors are monitored and averaged for each state. The value

assigned to a state is the average number of latch errors in that state. State

S~FAULT FREE S•TATE

NC Igu 1:PIN ERROR PROB: 0.00 m

PIN RRO .96 •

0 .23 0.9 ,,,...'PIN ERROR

L/ATCHED ERRO
4.57 0.01 0.98

PIiN EROEXPLOSION SA

PROB: 0.11l 8.11
0 PINERO

PROB: 0.18

Figure 12: Error explosion/degeneration model.

47

transitions occur at each clock cycle. The transition probability from state i to

state j is calculated by the ratio of the number of transitions from state i to j, to

the total number of transition out of state i.

From Figure 12, given a transient fault, there is approximately an 80 percent

chance of there being no impact on the chip. Although the chance of a latch

error resulting in an error explosion is small (six percent), when it does occur the

average number of latches holding an erroneous value is large (8.11 latches), i.e.,

although the explosion event rarely occurs, is potentially disastrous. The chance

of latch errors, in the explosion state, causing pin errors is higher than that for

the degeneration state (18 percent compared to 11 percent). This is clearly true

because, with the larger number of latch errors, the chance of error propagation

to the pins is increased. After an explosion, there is a 98 percent chance of latch

errors degenerating and then becoming fault free.

In summary, the probability of a sustained explosion is very low (2 percent).

The chance of uncontrolled propagation is small, thus the overall impact of a

transient is well contained. Further, if no latch error occurs within eight clock

cycles, no significant damage is likely to happen.

3.1.6(b). State transition model

The foregoing section presented an analysis of the forward propagation in

time of an injected transient. This section examines the question: given a latch

error in a unit, where did it come from? The question of the internal module-to-

module latch error propagation is addressed. It will be shown that the results of

48

this analysis are useful in identifying several critical aspects of the system. Some

examples include the identification of the critical error-propagation paths, the

determination of the module most sensitive to fault propagation, and the module

with the greatest potential for causing external pin errors.

Figure 13 shows a state-transition diagram, based on the measured data, to

quantify the inter-module latch-error propagations. In the figure, the states

represent error conditions in the specified functional units. Note that the model is

FULT INJECTION

.20 ' .29

DECDE COATRHO DOWNPE?

.34.02

Figure 13: State transition model.

.0

49

of the inverse Markov 7 type. Thus, given a latch error in a specified unit, the

model shows the probabilities that each of the other functional units are the error

sources. For example, in the figure, given an external pin error, the probability

of the ALU being the error source during the previous cycle is 0.16; the probabil-

ity of the control unit being the error source is 0.27. The transition probabilities

were calculated by monitoring latch errors in each functional unit for each clock

cycles. In order to designate source of error, the path(or interconnects) of error

propagation and the faulty state of the system in the previous the clock cycle are

identified. The value assigned to a state is the average number of latches affected

by transition into that state.

The model shows that latch errors in the decoder unit do not propagate to

other functional unit. All latch errors that occurred in this unit were due to the

direct effect of the injected transient, because the latches in the decoder unit are

well isolated from the inputs of the other units. The probability of a latch error

in the decoder unit propagating to the pins is small (0.01). Thus, the decoder is

not a critical unit from a fault-propagation point of view.

The model addresses several issues raised at the beginning of this section.

For example, the model shows that the critical fault-propagation path in the sys-

tem is between the control and the watchdog units. Given a latch error in the

control unit, the probability that it propagated via the watchdog unit is 0.33.

Conversely, the probability of the control unit being the source for a latch error

7The usual [foward transition Markov model cannot be used in a simple way to describe latch-error propagation since a latch
error can propagate out to multiple locations at once, i.e., a latch error can propagate to both the external pins and other latches in

50

in the watchdog unit is also high (0.30). When the other units are examined, it is

seen that, although the one-way propagation probability is high in some cases

(e.g., 0.63 from the watchdog unit to the multiplexor), none has a higher two-

way propagation probability. The critical path resulting in such a loop has a

greater chance of resulting in an uncontrolled error explosion. Therefore, all

other factors being equal, the best way to reduce intermodule error propagations

is to protect the interconnections between the watchdog and the control units.

Since a significant number of functional errors result from the second- and

higher-order latch errors, the system-level impact of providing this protection is

expected to be a decrease in the probability of functional errors.

The model also shows that the module with the highest potential to cause

external pin errors is the watchdog unit. Thirty percent of all pin errors were due

to the latch errors in the watchdog unit. Hence, to reduce the number of pin

error occurrences, the outputs of the watchdog unit should be protected. The

module most sensitive to fault propagation is the ALU unit. Of all the functional

units, an error occurrence in the ALU will most likely lead to the largest number

of latch errors (9.89). Applying internal retry to ALU operations may be a suc-

cessful way of reducing the number of latch errors.

Finally, it is seen that the probability of an injected transient directly causing

pin errors is low. More than 90 percent of the pin errors are due to second- and

higher-order propagation from latch errors. Similarly, the probability that an

injected transient will directly cause a latch error is also low. Notice that less

the circuit. Thus. an inverse Markov model is used to describe the transition from the consequent error source in each state.

51

than five percent of the latch errors for each state are due to the direct propaga-

tion from the injected transients. The fact that over 95 percent of latch error

occurrences are due to propagations from other latch errors makes fault propaga-

tion a critical issue from a reliability perspective.

3.1.7. Discussion

This section described a mixed-mode simulation approach, which simulates

the fault sensitivity of a chip-level design. The approach can effectively evaluate

alternative tactics at the design stage where changes can be made at low cost.

Faults are automatically injected in runtime at the device level, and their propaga-

tion and impact are monitored at the gate and function levels. A number of tech-

niques for fault-sensitivity analysis have been proposed and implemented in the

mixed-mode simulation approach. These include: transient impact assessment

on latch, pin and functional errors, external pin error distributions due to within-

chip transients, and error propagation models to depict the dynamic behavior of

latch errors.

A design analysis was illustrated through a case study of the impact of tran-

sient faults on a microprocessor used in jet-engine control. The study was used

to identify and isolate the critical fault-propagation paths, the module most sensi-

tive to fault propagation, and the module with the highest potential for causing

external pin errors.. The fault-propagation path between the control unit and the

watchdog unit was seen to be the most critical, which indicated that an increase

in the fault tolerance of this link may significantly improve the system

52

dependability. The watchdog unit was seen to have the highest potential for

causing external pin errors. An error occurrence in the ALU is more likely to

lead to the largest number of latch errors than one in any other functional unit.

We emphasize that the results of the case study are specific to the target sys-

tem. The methodology however, is general and can be used to evaluate other

fault-tolerant designs.

53

3.2. Fault-Dictionary Based Approach

This subsection presents a methodology for performing fast transient-fault

simulation. The methodology captures the logical error pattern that results from

a device-level transient and propagates the resulting error using concurrent simu-

lation. Several levels of fault dictionaries are used to record the error patterns

that result from device-level transient faults. Although fault dictionaries have

been used in the past to test and diagnose permanent failures, e.g. stuck-at faults

[48] and bridging faults [49], the application to transient faults creates additional

significant problems. In our approach, gates around the fault-injection region are

extracted, and a subcircuit consisting of these gates is formed. This subcircuit is

exercised by exhaustively applying input combinations while performing fault

injections. The resulting error patterns at the output of the subcircuit and the

corresponding input vectors are recorded. The recorded error patterns are used to

inject logic errors, at runtime, in the entire circuit. The approach makes use of

importance sampling to reduce the number of fault injections necessary to obtain

statistically significant results. The presented methodology is illustrated using the

MC68000 microprocessor.

Figure 14 depicts the overall experimental approach. The approach takes as

input a net list of the hardware description, timing information and test software.

A device-level fault behavior dictionary is generated by extensive circuit-level

fault simulations. The electrical-level simulation engine used is SPICE [50].

The recorded error patterns are used to inject logic errors concurrently at runtime.

The effects of injected logical errors are propagated throughout the design using a

54

FAST TRANSIENT SIMULATION

Target Design Stimulus:
(net-list) Test/ApplicatioriK Sofare

Automatic
Subcircuit Extraction Transient ConcrrenFault Injection Concurrent

CircuitulteInjection Logic Simulation
Circuit-levpelFZac

~FaultInectio$ I amportanc LSet Up • Samplinc

Detection External I/O Pin-Error
SPICE _ And And Program Upset

SPICE RecoirdingDecto[I Electrical Simulation IDetection

Figure 14: Experimental approach.

concurrent simulator. Errors affecting the external environment are monitored at

the 1/0 pins. The next subsection describes the details of the fault-dictionary

approach.

3.2.1 Circuit-level fault injection

The aim in this subsection is to generate logical error-behavior patterns of

smaller subcircuits and store them on a fault dictionary in a form that is as com-

pact as possible. Later we can inject, concurrently in runtime, the generated logi-

cal error pattern/behavior on the entire target design.

Combinational subcircuits, in acceptable sizes for a large number of repeated

SPICE simulations, 8 are chosen for the fault injection for the device-level fault

8Typically, thousands of repeated simulations of the subcircuit are necessary to try out all the input combinations and to inject
faults on every node for each input vector. Experimental results indicate the size of the subcircuit should be limited to about 50
transistors.

55

dictionary generation process. The target subcircuit and latches driven by the

outputs of those locations are extracted and evaluated. The extracted subcircuits

are exercised with exhaustive combinations of inputs while fault injections on

each node are performed. Faulty behavior at the outputs for each subcircuits is

analyzed and recorded in the dictionary according to the subcircuit's input vector,

fault-injection time, and location.

We also address the issues of timing, asynchronous logic behavior and inter-

facing the logic-to-electrical and back to logic-level at the analysis-mode boun-

daries following the techniques proven in [22].9 The steps involved in the fault-

dictionary generation process include: subcircuit extraction, transient-fault injec-

tion, fault-propagation and latching, and recording of fault dictionaries.

Subcircuit extraction: Randomly chosen subcircuits are extracted from the VLSI

design. An extracted subcircuit contains gates in all the fanout cones (paths)

from a combinational region and their respective terminal latches. Figure 15

shows an example subcircuit extracted from the ALU of the MC68000. The

inputs il,i2...i8 are the fanin inputs of the subcircuit (Subckt-C), and all the

fanouts of this circuit are terminated by latches N17, N18, and N19. Each input

is synchronized to one of the system clocks (Cl-C4) as shown in the timing

diagram. The reasons for setting up Subckt-C with all of its I/O lines

9For example, the issues in the accuracy of the signal transfer, between the electrical-level and the logic-level analysis, are
resolved. Experiments were conducted in [221 to determine the size of circuit to be simulated at the lower level, for fault injection,
in mixed-mode simulation. For a transient fault-induced voltage in a digital circuit to stabilize, a signal must travel through a
sufficient distance in the circuit. To ensure that this requirement is met, we simulate in electrical level the entire fanout path, until it
is terminated by a latch driven by system clock or other sequential signal. Once a fault gets latched, we can perform the rest of the
simulation at the logic-level analysis, since only the 'logic state' of the machine has to be considered.

56

FAULT ACTIVATION PROPAGATION AND LATCH ERROR

N88

Cl01

N2 F TIJ C I NSIE(o e(1 02
C3 .03

C4 04 ID

1]o61de[1L N
'nNd0[N1

noN3 5
03(out)

Wido ofSscpiblt
In2cte Fault Reutn1Lthero1n0

Figur F15 Aneapeo ucici Sb-)

57

synchronized to the system clocks are to ensure controllability of the input timing

and to determine when to observe the output during the circuit/timing simulation.

Transient fault injection: For each node in Subckt-C, a number of current-

transient injection/simulation runs are performed. In our experiment a current-

transient with the charge level of 8 pC was chosen for fault injection. This

charge level was chosen because smaller charge transients are unlikely to cause

any logic changes, and higher charge transients have no significant additional

effect [22]. In each run, a fault is injected at a specific time during the simulation

period. The resolution of the fault injections in time is chosen experimentally: if

the fault injection rate is too small, no latch-error is likely to occur; if the rate is

too high, an unacceptable number of simulations is necessary. We use an

importance-sampling approach [51] to increase the chance of a latch error

through biased sampling of fault-injection time-points. The objective of impor-

tance sampling is to concentrate the distribution of the sample points on the parts

of the interval that are of the greatest interest, instead of spreading them uni-

formly. First, using gate delays, we estimate the time point at which a signal

propagation ends up at the latch. Then we perform fault injection with a higher

distribution of samples at or near this time point. For each fault-injection time-

point, for a given node, an exhaustive set of input stimulus patterns is applied.

Fault propagation and latching: An injected fault can either propagate or be

masked. A case wherein a fault propagates and becomes a latched error is illus-

trated in Figure 15. When a fault occurs (node Nl), for a given input vector

58

(stimulus A), it propagates to the latch(es) with a certain probability. In the

example, the faulty signal propagates from node NI through nodes N2, N3 and

N4 and gets latched at the latch N19. The fault propagation path is shown by the

bold line in the circuit diagram. Note that propagation does not occur if the cir-

cuit is not in a favorable state, i.e., if input (i8) is zero, then the faulty signal

does not propagate from node N3 to node N4. The transient propagates only

when masking does not occur. For example, the simulation data from Subckt-C

indicates that the probability of fault propagation is 0.213. Once a fault pro-

pagates to a latch, the faulty signal can become latched if it is clocked. For

Subckt-C, the probability that a propagating transient is latched is 0.0869. The

overall probabilityof a fault becoming a latched error is given by:

p (latcherror)-p (fault-propagation)xp (latching).

For Subckt-C the probability of having a latch error is 0.00245.

Fault dictionary: Fault behavior is recorded at several levels of detail ranging

from the detected fault patterns to the probability values of possible fault patterns

for a given fault. A fault dictionary is a recording of the faulty behavior at the

output of a subcircuit. Three levels of fault dictionary are proposed. There is a

trade-off between the accuracy of probabilities of error patterns generated by a

device-level fault and the size of the dictionary.

Level-I: In a level-I dictionary, the faulty behavior at the outputs for each subcir-

cuit is analyzed and recorded in the dictionary according to its input vector,

59

fault-injection time, and location. Figure 16 shows an example of a level-I dic-

tionary. For example, for an input vector (0,0,0,0,0), fault-injection node N2,.

and fault-injection time (5 nsec), the dictionary shows which output is altered due

to a transient. Following the bold line from the input condition to the error-

pattern condition shows that the output 01 is altered by the fault. This dictionary

is a direct recording of all device-level fault simulation performed and can

require enormous amounts of a storage space. To cut down on the size, Level-il

and Level-HII dictionaries are proposed.

Level-IIII: In a Level-il dictionary, faulty behavior is recorded according to its

input vector and fault-injection location. Each entry, corresponding to a faulty

FAULT DICTIONARY: LEVEL-I

SUBCIRCUIT Cwith(i4,i5,i6=1,0,0)

Input Vecto Fault Iniecti~n FaulInjecti" n .. t ;................
(il,i2,i3,i7,iE Node# Ti•me O utput Condition

"00000. - F Faul~ty
-: Not Fault

Figure 16 ee-alt dictonry

000010
00011

1 1100

'11 1• 1I 0II ' l, , . .F

Figure 16: Level-I fault dictionary.

60

output pattern, contains the probability that the given pattern occurs from an

injected transient. Figure 17 shows the level-II fault dictionary generated for

Subckt-C. For example, for an input vector (0,0,0,0,0) and fault-injection node

N3, the dictionary shows that there is a 97.7 percent chance of having no error, a

1.1 percent chance of having a single-bit error (output 03), and a 0.8 percent

chance of having a multiple-bit error (outputs 01 and 03). The Level-II dic-

tionary is a reduced version of the Level-II, further reducing the required storage

space. In a Level-IIl dictionary, a faulty behavior is recorded according to its

input vector only. A subcircuit is treated as a black box at this level; the diction-

ary contains, for a given input vector, the probability of each possible error pat-

tern.

Figure 17 shows that the probability of having latch error due to transients is

very small. Over 99 percent of faults injected in this experiment do not get

latched, and hence do not cause any damage. Less than one percent of the

injected faults get latched. Although the probability that a transient will get

latched is small, recent system-level measurements show that the actual number

of transients that occur in a system can be quite large [24]. Hence, the absolute

number of latched errors can be significant. Further, for mass-produced chips,

the absolute number of errors per product can also be large. What we are con-

cerned with is the effect of those faults that get latched. We calculate the condi-

tional probability of a specific error pattern given that injected transients get

latched. The last column in Figure 17 shows the conditional probability for each

error pattern.
*

61

FAULT DICTIONARY: LEVEL-11 ~ -~

SUSCIRCUIT CwihiS= :0:0 Error Pattern/
Probability 01 02 03 Prob

Input Vector Fault Injection i- - - 0.977
(ii ,i2,i3,i7,i8) . od#F 01

00000 -F- 00

0001-F F 0.000
00011 F-- 00

0001 F -F 0.008
0112 ~ F F - 0.000

3 F F F 0.000j

4

1110 -01 02 03 Prob
1 1 101 -25-- 0.8
11 1 10 - .0

1111126 F 0.000
11111 - 27 00

28F 0.001
J J 0 0.000

F~ 0.000

FAULT DICTIONARY: LEV ELELi-

SUBOIRCUIT C..with(i4,i5i6=1,0,0) Error Pattern/

01 0203 Prob Prob
-- - 0.991 0.000

Inpt ecorF 0.004 0.444
F 0.003 0.333

001F F 0.001 0.111
F - 0.000 0.000
F F 0.001 0.111

000F F - 0.000 0.000
011F F F 0.000 0.000

01 02 03 Prob Prob
1 1 00 -0.994 0.000

1 1 01- F 0.001 0.167
1 1 1- F - 0.002 0.333
1 1 1 1F F 0.000 0.000

F - 0.002 0.333
F F 0.000 0.000

Standa rdized

Figure 17: The Level-LI and Level-III fault dictionaries.

62

3.2.2. Concurrent transient simulation

To achieve acceptable simulation speed for analyzing such large systems, we

employ a concurrent fault-injection approach based on CHAMP [52]. Concurrent

simulation allows simultaneous evaluation of a great number of faults in single

simulation pass. CHAMP, a concurrent logic simulator developed at the Univer-

sity of Illinois, has been shown to perform ultrafast fault simulation of very large

chips.

In order to accurately map the device-level fault behavior at the logic level,

we tied the fault dictionary generated with SPICE simulation to CHAMP. Thus,

for a single fault, the concurrent simulator simulates the circuit until the fault

injection occurs. The fault-injection process will be implemented as a runtime

modification of the logic state in the circuit whereby an injected-error pattern is

supplied by the device-level fault dictionary. The resulting logic-signal changes

in the subcircuit simulated with SPICE are due to the device-level transient faults

and are fed into CHAMP as logic-level errors. The concurrent simulation of the

entire circuit continues.

In concurrent fault simulation [53] all the faulty machines are simulated in a

single pass together with the good machine. To avoid duplicating the circuit

description, only the differences between a particular faulty machine and the

clean one are recorded at any particular time. This is achieved by associating

with each node in the circuit the state of the good machine at that node and a list

of fault effects (states of faulty machines) for those faulty machines in which the

63

state of the node differs from its state in the good machine. This list is called the

fault effects list.

Concurrent fault simulation is based on the event-driven simulation para-

digm [48] where a change in the logic value of a node (in the good or the faulty

machine) constitutes an event and causes that node to be placed on an event

queue. The simulation progresses through discrete time steps by handling all the

events at the current time and then advancing the simulation clock. Simulation

starts by applying a vector to the primary input nodes of the circuit, which causes

a subset of these nodes to be placed on the event queue. When an event is

removed from the event queue, it is processed as follows:

(1) If the event results from a change in the state of a node in the good machine

(good event), then all the elements (gates or subcircuits) having that node as

input are evaluated. A change in an output node of any such element causes

that node to be scheduled at the appropriate time (the current time plus the

delay of the element).

(2) An event from a faulty machine (faulty event) is handled similarly with the

state of that node taken from the fault effect list.

(3) When evaluating an element activated by a good event, any fault effect on

the input nodes of the element is propagated to the output, if the fault causes

the state of the output to differ from its fault-free value.

64

(4) If the state of a node in the good machine becomes identical to that in a

faulty machine, then the corresponding fault effect is dropped from the fault

effect list on that node.

The advantage of concurrent fault simulation is its speed, which results from

only the active faults in the circuit being considered. However, if the number of

active faults is relatively large, then the speed degrades due to the overhead

incurred from the maintenance of the fault effect lists [52]. Another drawback of

concurrent fault simulation is its unpredictable memory requirements.

3.2.3. Illustration of the fault dictionary approach

The fault-dictionary approach is illustrated with the MC68000 microproces-

sor. Six subcircuits are extracted from different parts of MC68000 and are

analyzed. The extracted subcircuits are exercised with exhaustive combinations

of inputs while fault injections were performed. Fault-injection time resolution

was 1 nsec or less. Generation of a fault Level-I dictionary for each subcircuit

took on the average about 27 hours on a SUN SPARC ELC workstation. Gen-

eration of Level-LI and Level-III dictionary from the Level-I dictionary took only

several minutes, since it only involves compressing probabilities in each entry.

A total of 223,360 SPICE simulations was performed. Faulty behavior at the

outputs for each subcircuits were recorded in the dictionary according to its input

vector, fault-injection time, and location.

The generated logical error pattern/behaviors from the Level-III fault dic-

tionary were injected concurrently at run-time on the target design. Over 30,000

65

error patterns were injected into the microprocessor and 48 (0.1548%) of those

injected errors propagated to the external 1/O pins and were detected. Average

error detection latency was 4.75 clock cycles. Test vectors (stimulus) executed

on the microprocessor during the simulation period included 75,000 instruction

cycles.

Device-Level Results: The device-level fault injection results are shown in

Figure 18 Out of 223,360 faults injected on six subcircuits, 427 (0.191 percent)

were latched. The probability of fault latching in each subcircuit was less than

0.0025.

Figure 19 shows the latency distribution of latch errors. The X-axis shows

the number of faults that were latched with various Y-axis latencies. Faults that

have shorter latencies are closer to the latches. My results show that transients

that occur near the latches have a greater chance of being activated. This result

Device-Level Fault Injection Result

#Latchs/ #Tran- #Intemal #Fault
#Inputs Outputs sistors Nodes Injection #Latched %Latched

Subcircuit 5 3 36 31 39,680 83 0.209
SubcircuitALU LOGIC 6 4 31 27 69,120 101 0.14.6
Subcircuit GByte Correction 5 3 27 22 28,160 69 0.245
Subcircuit I 2
Data Bus Mux 4 2 22 21 13,440 29 0.216

Subcircuit f
AOBL Latch 5 2 34 28 35,840 67 0.190

Subcircuit F
Prog Counter Log 5 3 31 29 37,120 78 0.210

Total - 223,360 427 0.191

Figure 18: Device-level fault injection result.

66

was somewhat predictable, since the farther the node is away from the latch, the

greater the chance it will be masked out during the propagation. These results

indicate that any circuit-level fault-protection schemes should be focused on

those gates near the latches.

Figure 20 shows the number of bit-flips (latches affected) in the event of

fault propagation. Given that a transient results in a latch error, the chance of

multiple errors is low (92 percent of the latch-error incidents were just single bit

errors). The existence of multiple latch errors potentially can be a serious prob-

lem, since these errors can subsequently propagate and lead to multiple failures.

Fault Latency

Latency = Time(latch-error) - Time(fauit injectio)
Numb r Average 21 .1 nS

100I...

90 .427 samples
8 0 z .t...
7 0

60

50. .48 ...
. 3B'* : 2aa...

30.
23 22

20........1 ...-.............. .

10 .E

05 15 25 35 45 55 65 75
Time (nS)

Figure 19: Fault latency.

67

Number of Bit-Flips (#Latchs Affected) in Each Fault Activation

Single Bit Error 192%

2 Bit Error 7%

3 Bit Error >1%

4 Bit Error 0%

Figure 20: Number of latches affected.

3.2.4. Discussion

This subsection has presented an ability to generate fault behavior dic-

tionaries for device-level transient faults. The gates around the fault-injection

location are extracted, and a subcircuit consisting of these gates is formed. This

subcircuit is exercised by exhaustively applying all input combinations while

fault injection is performed. The latch-error pattern at the subcircuit output is

analyzed and recorded in a dictionary. Entries in the dictionary consist of input

vectors, fault-injection times and fault locations. In order to obtain a fault dic-

tionary with statically significant values, we also develop a technique based on

importance sampling to choose the fault-injection time point. The generated fault

dictionaries are used to inject, in runtime, the logical pattern/behavior of device-

level faults using the fast logic simulator. We find that 99.8 percent of the

injected faults have no effect on the system, i.e., no latch error would result.

Multiple errors are less likely to occur (8 percent), but they can become a serious

problem, since they can cause multiple failures.

68

CHAPTER 4.

TRANSIENT FAULT MODEL

In simulating device-level transient faults, it is desirable to choose a fault

model which is as accurate as possible. An important question to address is the

level of detail with which fault models should be described in order to accurately

evaluate the faulty behavior of the target system. Some simulation approaches

choose higher-level fault models, such as the logic or system level, to gain an

increase in simulation speed. However, while the simulation speedups of such

models are often compared, rarely is the accuracy of the models rammified.

Several studies have investigated the impact of transient faults in computer

systems through simulation. Transient faults are injected at several different lev-

els of abstraction either by altering the logic values or by upsetting the

current/voltage levels of the target nodes momentarily during the simulation.

The device-level studies reported in [4] and [5] accurately model transients

using electrical-level simulation to capture the unpredictable circuit behavior

under faulty current or voltage surges.

At the logic level, studies reported in [20], [11], and [23] implement tran-

sients as momentary bit-flips of the propagating signal. A register-transfer-level

transient simulation, presented in [54], models transients as temporary changes in

logic values in the memory elements of the simulated circuit. The corrupted

values are either overwritten or propagated and cause errors in the other parts in

I
I

69

the system. In [55], a timing simulation technique that approximates the device-

level fault waveform is proposed for a faster transient simulation. These

approaches are significantly faster than device-level methods, since they do not

rely on solving the circuit equations. However, there is no way of knowing how

accurate their logic-level transient-fault models resemble the actual device-level

faults. A transient can propagate along multiple paths and result in multiple latch

errors. The chance of a faulty pulse propagating to a latch and becoming a latch

error is a function of device-level parameters. Also, the shape of the pulse may

be changed while it goes through different gates in the propagation path.

At the system level, transient faults can be emulated approximately by alter-

ing the logic state of the target system. This approach can be useful when a fast

analysis speed is essential. A software testbed, REACT, that performs automated

life testing of a variety of multiprocessor architectures through simulated-fault

injections is reported in [29]. DEPEND, developed at the University of Illinois,

exploits the properties of the object-oriented paradigm to provide a general-

purpose, system-level dependability analysis tool that can evaluate various types

of fault-tolerant architectures [28]. In [10], a testbed to perform fault injections

and to monitor the impact on a target system has been developed. The testbed

was used to validate a computerized interlocking system for the French railways.

Mixed-mode simulation approaches can be taken to combine the advantages

of the accuracy of the device-level analysis and the speed of higher-level

approaches. In the mixed-mode approach, device-level faults are injected in an

electrical-level analysis tool like SPICE [50], and subsequent logic-level errors

70

are propagated at the gate and higher levels, which allows the target system to be

simulated for a longer time period than does the device-level approaches

described earlier. In [21] and [22], experiments to quantify the impact of tran-

sients from the device- to the pin-level were described. Transients with low

charge levels (0.5 pC - 8.0 pC) were injected. The ensuing logic upsets and

first-order latch and pin errors were analyzed through analysis of variance

methods. Recently, a more efficient technique for performing transient-fault

simulation has been developed [25]. The representation of a subcircuit which is

subjected to transient-fault injections is dynamically switched among different

analysis modes, i.e. electrical and logic levels, during the simulation.

4.1. Validation of the Mixed-Mode Transient Simulator

In using such mixed-mode simulations, the question of the accuracy of the

signal transfer between the electrical-level and the logic-level analysis needs to

be addressed. For a transient-induced voltage in the digital circuit to stabilize, a

signal must travel through a sufficient distance in the circuit. In this context, we

define the gate distance as the number of levels of gates between two nodes in

the circuit. For example, Figure 21 shows 1,2,3 and 4 gate distances, from the

fault injection location (marked X).

In order to determine the gate distance to be simulated at the electrical level,

experiments were conducted wherein transients with different charge levels were

injected into a randomly selected node. The HS 1602 microporcessor was used

for this experiment. Charge levels were chosen to span the entire range where

71

I gate distance 3 gate distances 4 gate distances

FAULT INJECTION SITE

Figure 21: Gate distance definition.

logic upsets are likely to occur. This value was chosen experimentally to pro-

duce a worst-case deviation from the nonfaulted value without inducing per-

manent failures. Charge levels greater than about 10 pC can cause permanent

latch ups (device failure) [47]. Initially, all gates within five gate distances from

the target node were simulated at the electrical level. Next, the same injection

was made with all gates within four gate distances from the target node, simu-

lated at the electrical level. A logic comparison was made to verify the con-

sistency between these two simulation results. Similar injections were performed

with 3, 2 and I gate distances simulated at the electrical level, and again the logic

comparisons were made. Experiments were carried out for several other ran-

domly chosen nodes.

The above experiment was also repeated for transients occurring near

latches. Transients near the latches have to be dealt with separately, because

72

latches (latches contain transmission gates) do not stabilize analog signals as well

as other gates in CMOS technology. Five target latches in the circuit were ran-

domly selected and the nodes up to five gate distances away from the selected

latches were chosen as fault-injection locations. Analysis of the simulation

results for different gate distances, simulated at the electrical level, was per-

formed. Table 3 summarizes these results. For example, for combinational cir-

cuits, with a charge level of 7 pC, at least three gate distances from the point of

injection have to be simulated at the electrical level. In general, for combina-

tional circuits, up to three gate distances from the injection point have to be

simulated at the electrical level. Transients occurring near latches require up to

four gate distances be simulated at the electrical-levell°.

Table 3: Minimum gate distances.

Combinational Latch Distance (Gate Distance)
Charge Level Circuit

1 2 3 4 5
1 pC 1 2 1 1 1 1
3 pC 2 2 3 2 2 2
5 pC 2 3 3 2 2 2
7 pC 3 3 4 4 3 3
9 PC 3 3 4 4 3 3

4.2. Fault Model Comparison

For a large circuit, mixed-mode simulation still requires a large amount of

both processing power and storage space, since each fault injection must be

"I'heSe numbers are representative of only the circuit under simulation. For other systems, our approach allows similar

analysis to be performed to determine the appropriate gate distances that must be simulated at the electrical level.

73

treated separately. A method proposed to overcome the simulation resource

exhaustion through a fault-dictionary-based approach is reported in Section 3.2.

A fault-behavior dictionary generated from device-level fault analysis is used as a

fast look-up table for a logic-level concurrent or parallel fault-injection simula-

tion.

An important issue that has to be addressed is the level at which one inject

faults to accurately depict the realistic fault behavior of a system, i.e., is it neces-

sary to use device-level fault dictionary. Often, the analysis level is arbitrarily

chosen. Rarely is there significant information on the relative validity of the

models at different levels of abstraction. A measurement of the accuracy of a

high-level fault model as compared to a low-level model is necessary to deter-

mine the accuracy of data resulting from the high-level model.

This section examines an accurate transient-fault model (analog current

spike) and an approximate model (logic pulse) for studying transient faults in

VLSI circuits. The examination is carried out by comparing the simulation

results of the logic-level model to results obtained using a generally accepted

circuit-level SPICE model. The logic-level model is represented as a discrete

change in a signal level from logic zero to logic one, while the circuit-level

model is represented as a double exponential current injection, shown to be an

accurate representation of transient faults induced by alpha particles in [6]. The

faulty responses predicted by the two models are compared at the system level;

therefore, we may examine the difference in the predicted system behavior, and at

the subcircuit level we may examine why these behavior differences occur.

74

The two models are simulated in SPICE, using a fault dictionary approach, so

that the differences measured are due solely to the difference in the abstraction

level of the two models and not to any differences in the surrounding simulation

approach.

The comparison study was conducted in two phases. In the first phase, the

faulty responses predicted by the two fault models were compared at the subcir-

cult level. To determine the subcircuit-level impact of the transient models,

faults from both models were simulated at the device level using SPICE. The

analog fault behavior was simulated as a double exponential current injection, the

function proposed in [6]. The discrete model used to approximate the same

behavior was a voltage pulse from zero volts to five volts with a chosen duration.

The result of subcircuit-level impact of the transient models reported in [56]

shows that, for some circuits, it is not possible to obtain same latch error with a

discrete model as with analog fault model.

4.2.1. High-level impact of transient fault models

For the system-level comparison, we used a fault-behavior analysis approach

based on a fault dictionary. The dictionary contains device-level fault-behavior

patterns derived from SPICE-level injections.

Two types of dictionaries were generated: one using a realistic double

exponential current injection to model the transients, the other using a discrete

voltage pulse. In all other respects, the two types of simulation runs were the

same. Thus, any differences in the results were due solely to the differences in

75

the fault models. Experiments were run with five different fault dictionaries.

The first wag generated using the analog fault model. The other four were gen-

erated using the discrete model with different transient durations (pulse widths).

In most cases, discrete pulses with 2 nsec to 4 nsec widths closely matched the

waveform generated by the analog model for our target system; therefore, fault.

dictionaries with pulse widths in this range were good candidates for analysis.

The fault models used for generating the five fault dictionaries were:

A. Accurate transient fault model (device-level):

(1) Double-exponential analog current pulse

B. Approximate models:

(2) Discrete pulse with width = 2 nsec

(3) Discrete pulse with width = 3 nsec

(4) Discrete pulse with width = 4 nsec

(5) Discrete pulse with width individually varied by injection location to fit the

accurate model as closely as possible

A fault dictionary for the target subcircuit was generated using each of the

above fault models. The generated fault dictionaries were used to inject logic

errors at the subcircuit locations in the overall design. To map the device-level

fault behavior/model to the logic-level analysis of the entire microprocessor, we

tied the fault dictionaries generated using SPICE to a concurrent fault simulator.

For a single fault, the concurrent simulator evaluates the circuit until a fault
a

76

injection occurs. To inject a fault, the logic errors corresponding to the error pat-

tern supplied by the device-level fault dictionary are inserted into the circuit at

runtime. Error patterns are automatically supplied by the fault injection facility

for each clock cycle. The transient simulation uses a dynamic fault list where

faults can be created or deleted any time during the simulation period unlike the

fixed fault list used in stuck-at fault simulation. Dynamic management of the

fault list is necessary since transients may occur any time during the runtime of

the circuit and then may later disappear.

4.2.2. Results

System-level simulation was done by generating five fault dictionaries from

the analog and pulse transient simulations described above: one for the analog

model, and one each for the discrete model with 2 nsec, 3 nsec, 4 nsec, and vari-

able duration (matched to the duration of the analog transient). A fault dictionary

is a recording of all device-level simulation performed and can require an enor-

mous amount of storage space. To reduuce the amount of storage required for

the dictionaries, Level-III dictionaries were used. In a Level-II dictionary, fault

behavior is recorded according only to the subcircuit primary input patterns,

assuming all injection times and locations are equally probable. A subcircuit is

treated as a black box at this level. Thus, for a given input x, the fault dictionary

will contain the probability of each error pattern that can occur under input x.

The generated fault dictionaries were used to perform concurrent fault simu-

lation on the entire design. Over 5,000 error patterns were used to inject logic

77

errors for each experiment aimed at analyzing the validity of each fault model.

The Level-II fault dictionaries were used to generate the error patterns used in

the concurrent fault injection simulation. Test vectors (stimuli) executed on the

microprocessor during each simulation period included approximately 130

instruction cycles. The external 1/0 pins and data registers were monitored, and

detected errors were recorded. Table 4 shows, for each fault-model/dictionary:

the number of injected error patterns/faults that resulted in latch errors (some

injections resulted in pattern 000--no error); the number of detected external I/O

pin errors; the average latency of detected pin errors; and the number of data

error occurrences (an error in the value of any of the MC68000 data or address

registers). The percent difference between each result and the accurate result of

the analog fault dictionary is also given.

The resulting fault dictionaries are quite different, especially with regard to

multibit errors. These differences are traced to differences in the slope and mag-

nitude of the voltage of the transient error. Such discrepancies lead to a greater

number of multibit errors in the analog simulation than in the discrete simula-

tions. Furthermore, these multibit errors also lead to a greater number of data

and external I/O errors. A significant difference (at least about 40 percent) in the

number of detected 1/0 pin errors between the discrete model and the analog

model was found. Both the error latency and the number of detected data errors

were different by more than 50 percent between the best approximate model and

the accurate model. Thus, discrete simulation gives a significantly lower number

of detectable errors due solely to inaccuracies in its fault modeling.

78

Table 4: System-level impact.

CHIP-WIDE SCALE IMPACT OF TRANSIENTS

Discrete pulse waveform Double-exponentia

pulse widt 2nS 3nS 4nS Varied Analog waveform

Injected fault, 70 221 615 796 1835

1/O pin error 12 30 30 54 98

(°/9differenqe%oen analog. 81.8% 69.4% 69.4% 44.9% 0.0%
transient result)

Average latenc3 13.7 11.5 11.5 17.0 8.7 Clock Cycles
of 1/0 pin erro - Clock Clock Clock Clock

(%difference Cycles Cycles Cycles Cycles

frorn analog 57.5% 32.2% 32.2% 95.4% 0.0%
transient result)

of data error 11 41 41 65 147

(0%1d'iferencerrofr analoq 92.5% 79.6% 72.1% 55.8% 0.0%
transient resu t)

4.2.3. Discussion

Two transient fault models, an approximate logic-level model and an accu-

rate device-level model, were compared to determine the inaccuracies inherent in

the logic-level model due to its higher level of abstraction. The results of the

comparison showed that the two models could be made to match by selecting an

appropriate pulse width only if the injection site was a gate input or output with a

single propagation path to the circuit outputs (or latches). However, if the injec-

tion site was a node internal to a logic gate, or if it had multiple propagation

paths to the circuit outputs, the results predicted by the two models differed

significantly, leading to over a 40 percent difference in the number of pin errors

79

predicted at the system level. The impact of these results is that logic-level injec-

tions may have to be restricted to gate inputs and outputs with only a single pro-

pagation path to circuit outputs.

a

80

CHAPTER 5.

COINCIDENTAL FAULT ANALYSIS

This section discusses an experimental approach for simulation-based valida-

tion of fault tolerant microprocessor architectures. The approach is intended to

investigate critical aspects of such designs from a fault-tolerance viewpoint. The

method is illustrated on an example of a fault-tolerant jet-engine controller

(EEC131). In particular, the digital aspects of the dual-channel controller,

described at the logic and functional levels, are simulated, and transient fault

injections are performed. The coverage of the dual technique to single and corre-

lated transients is evaluated.

In the simulated controller, fault detection and reconfiguration are performed

through transactions over communication links. Instructions specifically

designed to exercise this cross-channel communication are executed. The simu-

lated fault-injection approach is illustrated by measuring the level of effectiveness

of the dual configuration to transient errors. The results show that none of the

single injections affects more than one channel, while approximately twelve per-

cent of the multiple injections affect both channels; none results in controller

failure since two additional levels of redundancy exist.

The next subsection contains the description of the experimental approach,

and subsection 5.2 describes the experiment. Concluding remarks appear in sub-

section 5.3.

81

5.1. Coincidental Fault Injection Experiment

The focus of the simulation experiment was to stress the fault-tolerance

mechanisms of the digital aspects of the dual system. The following aspects of

the controller were simulated: both CPUs, at the gate and electrical levels to

allow transient fault injections; the external modules, including 110 processors

and memories (which were not subject to fault injection), at the functional level.

Software to exercise the fault-tolerant operation of the dual system was pro-

grammed into the ROM and was executed by both processors. The executed

instructions were intended to mimic the process of sampling of the engine oil

temperature through the 1/0 processor, reading the sampled value from 110 pro-

cessor, sending the value to the other channel through the crosstalk communica-

tion link, and receiving data from the other channel for comparison. The focus of

the experiment was more on stressing the channel communications and less on

attempting to use real data.

Transients with a charge level, between 0.5 pC and 8.0 pC were first

injected into the microprocessor of channel A (for single fault injections) and

then into both channels A and B (for multiple faults injections). The charge lev-

els chosen represent the transient response of various heavy ions, including 100

MeV Fe ions, which are commonly found in the cosmic environment. These lev-

els were chosen to ensure that no permanent errors occur. Charge levels approxi-

mately greater than 10 pC are known to cause permanent latch ups (device

failures) [47]. Only the results for the charge level of 8 pC are presented here,

since, for charge-levels between seven and 10 pC, the probability of error is

82

relatively constant, i.e., additional charge does not result in an increase in the

error probability.

The locations of the fault injections were selected to maximize the chance of

channel failures in the system. This method is similar to the failure acceleration

technique proposed in [57], wherein it was shown that accelerated error-to-failure

scenarios can be used to estimate fault impact. For example, a transient was

injected directly to register R1 at a point in time when it contained critical input.

data. Thus, a worst-case situation for the controller was modeled in this experi-

ment. Locations and time-points of the injections were selected to alter the data

value stored in the accumulators and to stress the crosstalk communication

between the channels. These 110 functions were the targets for the. induced

failures, since their short latencies allowed us to measure the error coverage

without the overlapping effect of possible latent errors.

Transients were injected at eight selected nodes in the ALU and in the con-

trol units of the CPUs. Nodes were chosen that had low fanout, since the small

capacitive loadings made them sensitive to logic upsets. Additionally, each node

had fanouts to critical points in the CPU, e.g., the CPU registers, the CPU regis-

ter control points and the external data-bus control lines. Time points of the

injections were chosen to be the clock cycles before new values were latched into

the registers. In all, over 80 fault injections/simulations were performed.

83

This number was determined by the fact that additional injection did not vary the

result significantly."1

Recall that a single-channel functional error is assumed to occur if the

injected transient altered the critical input data in either R1 or R2. A dual chan-

nel functional error is defined as the event where the contents of CPU registers

R1 and R2 are faulty in both channel A and channel B. The error data for the

analyses were generated by comparing each faulted simulation with a fault-free

simulation. The error data were then processed by a series of programs that col-

lected statistics on the fault injections and the results.

5.2. Impact of Single and Multiple Fault Injections

The single-fault injection experiments resulted in three types of errors:

(1) Error in channel A only: In this case, critical data in register R1 in channel

A became faulty, after the contents of RI were sent to register R2 of channel B,

i.e., a correct copy of the critical input data was sent to channel B. This was not

a serious problem, since out of four registers R1 and R2 in channels A and B,

only one (R1 of channel A) was corrupted. The system could sustain a second

fault in one of the registers and continue to be operational.

(2) Crosstalk error: In this case, an error was introduced during the communi-

cation between the two channels in the dual system. During the process of send-

ing the critical data from R1 in channel A, to R2 in channel B, the 110 processor

"The determination of the number of fault injection also follows common statistical principles, since by the law of large
numbers, a sample of greater than approximately 30 is expected to produce stable statistical distributions.

84

of channel A read faulty data into the 1/0 buffer from the bus. As a result, the

1/0 processor sent a faulty value to channel B. This was also not a serious prob-

lem, since as before three of the registers contained error-free data (only R2 in

channel B is faulty). Here again the system could sustain a second fault with no

apparent impact.

(3) Error in both channels: In this case, a transient altered the content of R1 in

channel A before it was sent to channel B. Thus faulty data from R1 in channel

A was sent to R2 in channel B, i.e., the data in both R1 in channel A and R2 in

channel B were faulty. The system was still operational, because the data in R2

in channel A and in R1 in channel B were error free. However, unlike the above

cases, a second fault could cause both channels to have functional errors, which

is the most critical of the single fault conditions.

Table 5 summarizes the results of the experiment. In the table, the number

of transient injections resulting in errors in each case is given. Note that approxi-

mately one in three transients causes an error in the critical data. Over eight per-

cent of the injections result in alteration of critical data in R1 in only one chan-

nel. There is approximately a 12 percent chance that correct data from R1 in

Table 5: Error due to fault injections in the channel A.

Error Category Error Frequencies Percentage
No Error 51 63.8%
Error in Channel A Only 7 8.8%
Crosstalk Error 9 12.3%
Error in Channels A and B 13 16.3%
Total 29 36.3%

85

channel A is altered during the crosstalk communication to channel B. The pro-

bability of a transient causing an error in both channels is moderately high (16

percent). In each of the above cases, the controller continues to operate without

failure because, one of the channels still provides the correct input data.

5.3. Multiple Fault Injection

The dual configuration of the system is quite effective in tolerating single

event faults. However, in an actual operating environment, transients do not

always occur in isolation. The chances of having multiple errors as a result of

external current or voltage spikes or, as a result of transients occurring on the

external input lines, may be significant. This is particularly so if the input lines

are connected to multiple locations in the system. For example, a lightening

strike on an aircraft can affect several sensor-input lines of the avionic equip-

ment. The resulting errors may impact more than one CPU or component simul-

taneously and can alter critical input data in several registers. The impact of

transients occurring at multiple locations, at the same time, is studied in this sec-

tion. My fault injection methodology places particular emphasis on multiple

errors that can result in altering critical input data in both channels. We do not,

however, claim to accurately model the physical transients occurring in real

avionic environments.

Table 6 shows the impact of the multiple transients in the target system. In

the table, over 52 percent of the multiple errors result in functional errors in one

channel. However, only 12 percent of the injected transients result in causing

86

Table 6: The multiple fault injection results.

Fault Category Occurrences Percentage

No Error 19 47.5%
Functional Error in One Channel 21 52.5%
Functional Errors in Both Channels 5 12.5%

functional errors in both channels, i.e., only one in every four functional errors

affects both channels. The overall coverage of multiple transients is approxi-

mately 88 percent. The confidence interval for this estimate is calculated in the

following section. Multiple faults that alter the contents of the Rl registers in

both channels are seen to be critical since they will result in the invocation of the

reserve value. An increase in the fault tolerance of the input data paths to the Rl

registers and their control circuits may significantly improve this aspect of system

dependability.

5.4. Confidence Limits

Assume that each multiple fault injection can cause both channels to have

functional errors with a probability p. Assuming that the fault injections are

independent, the probability of a functional error on each trial is p. It is easily

seen that the random variable X (number of failures) has binomial probability

distribution with n = 40, p = p and q = 1 - p; X in our experiment is 5. The

estimated value, ý, from the experiment is 0.125 which equals the number of

functional errors divided by the number of fault injections.

87

Since the number of trials is sufficiently large (n = 40), the probability density

function of X can be approximated by a normal distribution with p. = np = 5.000

and &. = np(1-p) = 4.375.

We find the 90% confidence limit [a, 13] for X as follows:

Lower 45% limit: a = X - Z 0.05 (al'4n)

Upper 45% limit: 3= X + Z0.05 (AI'nn)

Based on the above assumptions, the 90% confidence limits for the number of

dual channel failures in the experiment is equal to [4.456, 5.544], i.e., the cover-

age of multiple transients is [86.1%, 88.9%] with 90% confidence.

5.5. Discussion

This section presented an experimental approach for simulation-based

evaluation of a fault-tolerant feature in the target architecture. The approach used

mixed electrical and logic simulations, combined with fault injections, to evalu-

ate the susceptibility of fault tolerant designs to transient errors. The method was

illustrated on the digital aspects of a fault tolerant, dual channel jet-engine con-

troller. The coverage of the fault tolerance technique to single and multiple tran-

sients was evaluated. The locations and the time-points of the fault injections

were selected so as to maximize the chance of channel errors. Specifically, faults

were injected under conditions where critical communications were taking place

within the dual system.

88

The results showed that the controller had an estimated 100 percent coverage

against single isolated transients, while approximately 12 percent of the multiple

transients affected both channels.

89

CHAPTER 6.

SOFTWARE UPSET ANALYSIS

This chapter describes a simulation based approach to quantify the impact of

low-level transient errors at the software execution level. The experimental

approach analyzes the software (program-flow level) upsets in VLSI systems.

Automated fault-sensitivity analysis, for the runtime injection of transients at the

device level and the assessment of the resulting impact on the program control

flow, is proposed. Using test workloads, the type of upsets at the program-flow

level which can result from fault propagation are determined. The mechanisms

involved in internal propagation of latch errors and their effect on the software

execution are modeled.

The approach is illustrated by a case study of the HS 1602 microprocessor.

For each section in the application program, the chances of having single and

multiple upsets from the fault injection are determined. The analysis showed that

about 20% of all upsets were multiple in nature. The results suggest that current

methods of validation that assume single upsets may be inadequate. A determi-

nation of the error characteristics at the software level is performed and the faulty

behavior of the software due to the hardware transients is quantified. A Markov

model is constructed from empirical data to describe the error propagation within

the microprocessor and the subsequent impact at the program flow. The model is

used to identify the functional unit most sensitive to error propagation and the

unit with the highest potential of causing software upsets.

90

6.1. The Experimental Approach

A number of techniques, at the hardware level, for fault sensitivity analysis

have been proposed and implemented in [22]. They include transient impact

assessment on latch, pin and functional errors, external pin error distributions due

to within-chip transients, and error propagation models to depict the dynamic

behavior of latch errors. The details of these analysis techniques are reported in

the Chapter 3. An equally important issue that has to be addressed is the fault

impact at the program control flow level. To quantify and model the fault impact

on the executing software, we performed a combined analysis of the hardware

and software behavior. In this section, error characterization methodologies and

a software monitoring technique are developed to allow such combined analysis

via simulation.

To characterize the software upset, faults are injected at runtime, at the

transistor level, and their resulting error is propagated to gates and latches,

through the chip's functional units. Resulting software upsets are detected

through synchronous monitoring the hardware activity while the application pro-

gram executed on the target design during the simulation.

A functional unit that is most likely to cause a given type of software upset

is identified. The internal propagation of latch errors and their effect at software

execution are modeled. The faulty hardware state (i.e., state of latch errors in the

hardware for a given clock cycle) that has the highest chance of resulting in an

upset, on the executed program, is isolated through modeling the latch error

-

91

propagation in hardware. Design feedback- information is generated using such

parameters. With such information, a designer can come up with a scheme to

protect the functional unit most sensitive to error propagation and modify the

design to avoid the critical fault-siiuation that can lead to a failure.

We use the mixed-simulation approach described in Section 3.1. The fault

injection process is illustrated in Figure 22. The injected current source is

specified as a mathematical functional and the resulting transients can be of vary-

ing shapes and duration. The user can control the location of a fault, the time

and duration of a fault, and the shape of the current source. The details of vali-

dation of fault injection method appear in [22].

FAULT INJECTION

Fault injection at device-evel simulation

Fige 2STUDY

.*

5 i:Current
(V) !: \ !: waveform

: i..: Injected FAULT/ERROR PRGA
FLOW

0 (e.g. Transient) Detecttion/TraceMOIRo ;;i... r O IO

S~X Fault Injection Location

Figure 22: Fault injection illustration.

92

The fault/error tracing facility monitors all switching activities in the target

system, including fault propagation through each gate or transistor, for all pro-

cessed events. The trace data for each event consist of the time of the event, the

hierarchical node name, and the new and previous voltage levels (for electrical

nodes), or the new and previous logic levels and their strengths (for logic nodes).

The program-flow monitoring facility captures the program execution information

in the target system during the fault injection and subsequent error propagations.

The executed program sequence and processed data are traced through monitor-

ing at counter register, program-address bus, data registers and data bus. With

the program-flow trace, upsets occurring at the software level can be detected.

6.2. Fault/ErrorfUpset Analysis

Recall that the tracing facility is capable of monitoring each node. The error

data for the analysis are generated by comparing each faulted simulation with a

fault-free simulation. An error is assumed to occur if the injected transient

causes the node voltage to vary beyond a defined logic threshold. For each simu-

lation, the recorded data include the time of fault occurrence, the location of

fault, the faulted value, and the fault-free value. Each fault event is also

classified as either a timing error (premature or late firing) or a value error.

Statistics are collected on the fault injections that result in latch errors and

upsets (altering the flow of an application program). An error is assumed to

occur when an erroneous value is detected at the output of a latch or monitored

93

node, and an upset is assumed to occur when the program counter or a data regis-

ter value is altered.

System error state is characterized in the following way. From the collected

data, the system error-signature is generated by counting the number of latch

errors by functional units, for each clock cycle following the fault injection. Fig-

ure 23 illustrates capturing such error-states. For example, during the clock cycle

ti there are 2 ALU latch errors and 1 control unit(CNT) latch error and so on.

EXTRACTING ERROR SIGNATURES FROM TRACE

SYSTEM CLOCK (TIME) ->
j~t i- -t I-t 1 "-

:..H.......... °.,................... .o o.°... ... °... =...... ... ,o,.....

C" ALU ALU ALU [] ALU

S.................

LatchCNT o CNT [3 CNT 0 CNT

w/faulty Q .. 0

3others oothers oothers c3others
..

SYSTEM
UNDER
EVALUATION

V V "V

COLLECTED SIGNATURES SEQUENCE FAULT-FREE CIRCUIT

Figure 23: Error-signature generation.

94

The signature for ti is then given by 2-1-... (ALU-CNT-...). A sequence in time

(to.0 ,ttiti+I,...) of error signatures is generated for each fault. injection until

the system becomes fault free or fails completely (defined by a processor stall).

For each clock cycle, the faulty state of the system is represented by its error sig-

nature. Thus the change in error signature from one clock cycle to the next clock

cycle represents the system's response to the internal fault propagation.

All observed error signatures from the fault injection experiment are

clustered into representative states using a statistical clustering algorithm based

on Euclidean distance. A Markov transition model to depict the dynamics of the

space and time fault propagations within the chip is then generated with transi-

tion probabilities calculated from the sequence in which error-signatures occur.

The probabilities of transition between the representative error-signature states

and detected program upsets are quantified in the Markov model.

A single or multiple program-flow level upset is detected when the injected

transient becomes activated and propagates to alter a value in the program

counter, the program-address bus, data registers or the data bus. We define a sin-

gle event program upset as a situation when an injected transient causes a single

point flip of a logic value in the monitored location in time and space. Similarly,

a multiple event upset occurs when a transient propagates to more than one moni-

tored location in time and space.

a

95

6.3. Upset Classification

The analysis environment quantifies the fault sensitivity of a chip by

evaluating a number of measures. The probabilities of latch error, data error and

program deviation are calculated. Analysis of the the error/upset data is per-

formed to determine the effect of the injected transients on the severity of latch

errors and the impact on the flow of the executed application program. Upsets

are categorized into classes according to their incorrect program-flow scenario.

Next, the Markov model to depict error propagation within the chip and the

software-level program execution is generated. The following terminology is

used in the analysis.

1.) Latch Errors: Fault injections which result in voltage transients that cause

errors in latch outputs.

2.) Error Signature: Distribution of latch errors in functional unit of the chip for

a given clock cycle.

3.) Data error: Fault injections which result in voltage transients that cause

errors in any of the processed data by a studied system.

4.) Program Deviation: Fault injections which result in altering the flow of the

executed program in the studied system, e.g., a transient can alter address

bus while loading in a target address for a jump instruction.

96

5.) Single event upset: Fault injection which results in a data error or a pro-

gram deviation at exactly one point, in time and space.

6.) Multiple event upset: Fault injection which results in more than one data

upset and/or program deviation.

Program-level upsets are categorized in Figure 24. Single and multiple data

error and program deviations are illustrated. The dotted line shows the correct

program-flow path and the solid line shows the observed program-flow path.

Any combination of data error and/or program deviation can occur from fault

injection. The detailed approach of the analysis is illustrated via the case study

in Section 6.5.

PROGRAM-LEVEL UPSET CLASSIFICATION
Proper Observed DATA UPSET MULTIPLE PROGRAM DEVIATION WI

Program Program DATA UPSET DEVIATION DATA UPSET
Flow Row

OR:

'if

NXI -DATA CORRUPTION SINGLE EVENT UPSETS
MULTIPLE EVENT UPSETS

Figure 24: Program-flow level upsets.

97

.6.4. Fault Simulation

Several issues are addressed in the simulations. Emphasis is on executing

and modeling of a realistic workload under varying situations of the system under

study. Application codes were executed on the target system during each simula-

tion period (Figure 25).

The suite of application codes was carefully selected to ensure that different

aspects of the microprocessor functions were exercised. The codes consist of

four software sections. Each section exercises a different aspect of the design

under study. Section A exercises timer circuit. It contains the code that gen-

erates synchronizing signals and a reset signal in case of parity error or a failure

of the software sanity timer. In section B, the arithmetic and logic functions are

EXECUTED PROGRAM ON THE TARGET DESIGN

SECTION A Watchdog timer reset and synchronization

SECTION B Arithmetic instructions
....

SECTION C I III Memory operations.......................
*SECTION D Branching instructions

Figure 25: The application program.

98

exercised and section C performs different memory operations. Section D con-

tains branching instructions.

Transient faults were injected during the execution of each program section

and the program flow in the chip was monitored. The error signatures were also

collected from every latch in the system for each clock cycle. About 40 instruc-

tion cycles (45150 nsec) of the application code were executed on the target sys-

tem for each program section. Simulation resolution was 1 nsec or less. Each

fault-injection simulation run took on the average about 20 minutes on a SUN

IPC-SPARC workstation. A total of 1400 simulations were performed. During

the simulation all the nodes (including all latches and external 1/O pins) in the

circuit were monitored and processed.

To establish simulation accuracy, a fault-free simulation run was compared

with the operation of the actual hardware unit which is currently in operation at

the NASA Langley Research Center. Two comparisons were made. The first

verifies the correct flow and execution of instructions by monitoring data,

address, and control lines during the times that these lines are stable (logically

valid). Correct execution flow was observed for the entire simulation period.

The second comparison, which is more rigorous, monitors all changes in logical

values, including transition times. This comparison reveals electrical characteris-

tics of the simulation, such as propagation delay, race conditions and gate load-

ing. The result showed that the changes in the logical values for both the

hardware unit and the simulated model are identical, but the times of the transi-

tions are slightly skewed. The timing skew was due to the variance of several

I

99

design parameters. Gate delay, for example, is specified as minimum, typical,

and maximum delay time. A normalization was needed because the actual sys-

tem runs at 12.08 MHz and the simulation was set at 82 nsec per clock cycle

(12.195122 MHz).

6.5. Results

This section provides a detailed illustration of the analysis approach via the

actual results for the target system. The impact of injected faults at the latch and

software level is determined. Also an empirical model of fault manifestation is

derived from the data. These results provide an overview of the fault propaga-

tion within the chip and as such give a general evaluation of upset sensitivity of

the design.

6.5.1. Upset severity

Figure 26 summarizes the overall impact of injected faults. In the figure,

number (and probability) of total number of fault injections, latch error probabil-

ity and probabilities for single and multiple upsets, during the execution of each

program section, are shown. The first row shows the number of fault injections

and the second row shows the number of those that result in latch errors. The

third through sixth rows show evidence of having data upset, multiple data upset,

program deviation and program deviation with data upsets, respectively. The last

row shows the combined upset probability for each program section.

100

PROGRAM-FLOW LEVEL IMPACT OF INJECTED FAULTS

FI Pro~gram
Ust Section ALL PROG.Upset PROG A PROG B PROG C PROG D COMBINEDCCategory

Number of 350 (100.0%) 350 (100.0%/6) 350 (100.0%) 350 (100.0%) 1400 (100.0%)

Fault Injectons (25.0%) ... (2.0) (2.0%) (25.0%) 100.0%)
i I I I -

Number of 84 (24.0%) 183 (52.3%) 149 (42.6%) 96 (27.4%) 512 (36.6%)

Latch errors (16.4%) (35.7%) (29.1%) (18.8%) (100.0%)
SIII n -

DATA 32 (9.1%) 74 (21.1%) 45 (12.9%) 38 (10.9%) 189 (13.5%)

UPSET (16.9%) (39.2%) (23.8%) (20.1%) (100.0%)
, -J .. i -

MULTIPLE 0 (0.0%) 13 (3.7%) 8 (2.3%) 0 (0.0%) 21 (1.5%)

DATA UPSET (0.0%) (61.9%) (38.1%) . . (0.0%) (100.0%)
,,III I

PROGRAM 3 (0.9%) 22(6.3%) 5 (1.4%) 24 (9.6%) 54 (3.9%)

DEVIATION (5.6o) _:.......(40.7%) (44.4%) (100.0%)

DEVIATION W/ 2 (0.6%) 12 (3.4%) 21(6.0%) 0 (0.0%) 35 (2.5%)

DATA UPSET (5.7%) ...0...(34.3%) (60.0%) (0.0%) (100.0%)

TOTAL UPSETS 37 (10.6%) 121 (34.6%) 79 (22.6%) 62 (17.2%) 299 (21.4%)

(12.4%) (40.5%) (26.4%)(20.7%) (100.0%)

Figure 26: Impact of injected faults.

Note that faults injected during the execution of program B had the highest

chance of having upset. Forty and one-half percent of all observed upsets were

contributed by program B. In general, ALU operations (program B) are most

susceptible to upsets. Program A had the lowest probability of having upsets.

Only 37 out of 84 latch errors resulted in upsets, because there are many logic

rewrites in the timer reset operations.

The last column in the figure shows the combined result for all programs

(A-D). Note that there is very high probability (13.5 percent) of having single

101

data upset. Such single upsets can be easily detected and corrected by the error-

correction scheme. Overall, there was a 21.4 percent chance of an upset occur-

ring. Multiple upsets (multiple data and deviation w/ data upset) accounted for

about 20 percent (51 out of 299) of all upsets. Note that multiple upsets are not

recoverable with recovery schemes often implemented, e.g., single bit parity

correction circuit will fail under multiple bit flips, and a rollback recovery

scheme will not function under program deviation with corrupted rollback vari-

ables. Only programs B and C resulted in multiple data upsets.

6.5.2. Error propagation modeling

Data were collected on the fault injections that resulted in a voltage transient

large enough to produce latch errors and upsets. From the collected data, system

error-signature sequence was generated. All observed error signatures from the

fault injection experiment were clustered into representative states to generate a

discrete time Markov transition model. Figure 27 shows a Markov model based

on the measured data, to quantify the in-chip latch-error propagations. In the

figure, the value of a state is the representative error signature for a clock cycle

in question. Thus, given a latch-error condition of the system, the model shows

the probabilities of staying in the current state, going into a different state or

becoming fault free. For example, the probability of a fault injection resulting in

STATE 1 is 0.14. At STATE 1, the probabilities of staying in STATE 1 is 0.04

and the probability of becoming fault free is 0.84.

102

MARKOV ERROR SIGNATURE MODEL

0.04
0.14 SAE10.84

0.05 SATE 20.91

FAULT 0.0 004 '0.03 0.0305 FAULT

INJECTION 0.0SAE0.93 FREE
., f 0.03 . . . / 'o

S~0.04

0.06 0.1 STATE 4 0.79

0.02 0.6 STATE 50.97

NUMBER OF ERRORS IN: ALU CNT CON MUX WDG (Functional Units)

ERROR SIGNATURE •

Figure 27: Error state transition model.

From the model, we observe that the latches in the ALU, followed by the

latches in the control unit, are most susceptible to error propagation. STATE 5

has the highest number of error count, i.e., given that system goes-into STATE 5,

on the average, there will be 64 latch error counts in the ALU unit and 25 in the

103

control unit. It is clear that these two units are the most likely candidates for

error masking (e.g., redundancy).

Figure 28 shows, for each state, the probability of having an upset. Using

this figure the severity of different states can be compared. For example, from

Figure 27, STATE 5 and STATE 2 have somewhat similar error signatures.

However, as seen in Figure 28, STATE 5 and STATE 2 represent two distinct

faulty states. STATE 5 has a high probability of causing single data upset, while

STATE 2 has a high probability of causing program deviations and multiple data

upsets. Thus, of these two, STATE 2 is easily the more critical (multiple

upsets).

ERROR STATE IMPACT ON SOFTWARE

MULTIPLE DEVIATION
DATA DEVIATION

DATA WITHGiven an error state UPSET PROGRAM
i9UPSET DATA UPSET TOTAL

in the Markov model,

* hat is the chance
one of the following OR BY
program upsets? STATE

STATE1 12 (46.2%) 0(0.0%) :14 (53.8%) 0(0.0%) 26 (100.0%)

STATE 2 57 (5233%) 15 (13.8%) 28 (25.7%) 9(8.3%) 09 (100.0%)

STATE 3 24 (100.0%) 0(0.0%) 0(0.0%) 0(0.0%) 24 (100.0%)

STATE 4 23 (41.1%) 0(0.0%) 7(12.5%) 26 (46.4/) 56 (100.0%)

STATE 5 73(86.9%) 6(7.1%) 5(6.0%) 0(0.0%) 84 (100.0%)

Figure 28: Software upset result.

104

When latch error occurs in the multiplex or the watchdog units, the system

must be in STATE 3, since (from Figure 27) this is the only state that has latch

errors in the two functional units. Latch errors in the multiplier and watchdog

units are not so crucial since STATE 3 can only result in single data upset.

6.6. Discussion

This section presented the method to quantify the impact of low-level tran-

sients at the software execution level. The software (program-flow level) upsets

in VLSI systems have been analyzed using the experimental approach.

Automated fault-sensitivity analysis, for the runtime injection of transients at the

device level and the assessment of the resulting impact at the program-flow, was

performed. Using test workloads, the types of upsets at the program-flow level

which can result from fault propagation were determined. The mechanisms

involved in internal propagation of latch errors and their effect at the software

execution were modeled.

The approach was illustrated by a case study of an HS 1602 microprocessor.

Four sections of the application code were executed during the analysis. For

each section in the application program, the probabilities of having single and

multiple upsets from the fault injection were determined.

A Markov model was constructed from empirical data to describe the error

propagation within the microprocessor and the subsequent impact at the program

flow. The model is used to identify the functional unit most sensitive to error

propagation and the unit with the highest potential of causing software upsets.

105

Different error characteristics at the software level have been determined.

Overall, there was a 21.4 percent chance of having an upset. About 20 per-

cent of all observed upsets were multiple in nature. Arithmetic operations in the

application program are most susceptible to upsets. About 40 percent of all

observed upsets were contributed by program section B, which consist of arith-

metic instructions.

From the generated empirical model, we observe that the latches in ALU are

most susceptible to latch error propagations, followed by the control unit.

STATE 5 has the highest number of error counts. If partial redundancy is the

employed design approach, the protection of ALU and control units would be

most beneficial since ALU and control latches are must susceptible.

106

CHAPTER 7.

PERMANENT-FAULT ANALYSIS

This section describes a simulation based approach for predicting permanent

faults in VLSI designs. The approach combines the switch-level circuit simula-

tion and the device-level Monte Carlo simulation to achieve realistic reliability

assessment. A system under investigation is first simulated at the switch level

and trace data on switching activity are collected. This trace data are then used

along with Monte Carlo simulation to model wear-out at the device level, due to

different failure mechanisms. The approach currently supports two failure

mechanisms: electromigration and gate oxide breakdown. The Monte Carlo

analysis uses importance sampling to reduce the run lengths. The key advantage

of this approach is that it can closely mimic dynamic sequences of events in a

physical device through time for the specified failure mechanisms. The technique

can localize the weak location/aspect of the target chip and generate the TTF dis-

tribution of a VLSI chip as whole based on traces from circuit simulation using

actual application codes and under realistic operating condition.

The process of electromigration is modeled by removing elements (metal

grains), based on a probability calculated from normal charge distribution, in a

matrix that depicts a metal line. This process is carried out in parallel for all the

metal lines in the circuit. A metal line failure, i.e., chip failure is assumed to

occur if a void path is created from the left to the right edge of the matrix. The

analysis is performed a number of times to determine the distribution of the TTF

107

of the target chip. Concurrently, a similar Monte Carlo approach is used to simu-

late failures due to dielectric breakdown.

The use of this approach for evaluating the reliability of a design is illus-

trated with a case study of the HS1602 microprocessor. The simulation analysis

is performed under varying operating environments and fabrication technology

parameters. In particular, operating voltage, temperature and device dimension

are varied and the reliability impacts of reduced dimension and technology

improvements are quantified. The method is illustrated by applying it to predict

the TTF characteristics of a microprocessor chip in a typical operating environ-

ment (room temperature, 5 V).

The next subsection describes the experimental approach, and the experi-

mental analysis of the target system is illustrated in subsection 7.2. Concluding

remarks are in subsection 7.3.

7.1. The Experimental Analysis Approach

The approach combines circuit simulation and Monte Carlo analysis to simu-

late the wear-out processes for an entire IC chip. Figure 29 depicts the overall

experimental approach. First, accurate simulation of the target chip is performed

to acquire trace data on switch activity, using a hierarchical switch-level simula-

tor, SPLICE and running actual application codes. A tracing facility monitors

switching activities on all of the internal nodes. Then, using the switching

activity information (trace data), the electromigration wear-out and the oxide

breakdown processes are simulated using Monte Carlo techniques. For example,

108

WEAR-OUT SIMULATION

TEST VECrORS
CIRCUIT DESCRIPTONS Application Software

0001010101103010 0110001

FABRICATION PARAMETERS 00•l110101000. /

SWrrCH-LEVEL CIRCUIT SIMULATION
(SPLICE)

MONITORING

WEAR-OUT INITIALIZATION TRACE DATA

MONTE CARLO WEAR-OUT SIMULATION,, /•, SaitalAlys

IMPORTANCE SAMPLING FAILURE LOCATION IDENTIFICATION

Figure 29: Experimental approach.

to perform Monte Carlo simulation of electromigration, a failure site on a metal

line is modeled by a matrix of metal grains, and grains are removed based on a

probability calculated from the empirical data. The grain-removal process is per-

formed until a line failure has occurred, i.e., a void has formed on a line. The

importance sampling method is used to accelerate the wear-out process. The

resulting TTF data are collected, and locations of the 'first-to-fail' nodes are

identified.

109

Other proposed approaches for reliability prediction mainly consist of deriv-

ing analytical formulas from plausible physical assumptions, with computational

results that can be tested against available empirical data. Such methods provide

closed-form information such as time-to-failure at component level, but they lack

the ability to generate important information such as accurate distribution of

time-to-failure of a VLSI chip as whole, which a simple MTTF calculation can-

not provide. My goals were to overcome these shortcomings of conventional

approaches and to develop a realistic model of the wear-out related failures that

occur during the operational phase for a system.

Advantages:

The key advantages of the Monte Carlo approach over other proposed

methods are:

I. Fail-sensitive locations in the circuit can be identified at the design phase, and

effective feed-back information for designers can be generated. Also, the Monte

Carlo technique allows the user to observe dynamic processes of wear-out in the

target chip. Such observation of different wear-out processes can be valuable

information at the design stage.

II. The Monte Carlo approach can effectively model the workload-reliability

dependency of VLSI systems. In order to obtain useful predictions, reliability

analysis based on realistic workload is important. In our experimental approach

110

a target system can be simulated with its actual application code to generate

traces for Monte Carlo wear-out analysis.

Section 7.1.1 describes the simulation of the target chip to acquire trace data

on switch activity; Section 7.1.2 develops the simulation of electromigration and

oxide-breakdown via Monte Carlo techniques. The field device failure, due to

wear-out, occurs in the order of years. Section 7.1.3 describes an acceleration

technique that allows simulation of such long-term effect.

7.1.1. Logic simulation

A hierarchical timing simulation at the switch-level using SPLICE [45]12 is

performed. About 80 instruction cycles (90,300 nsec) of the actual application

code were executed on the target system during the simulation period. Simula-

tion resolution was 1 nsec or less. The suite of application codes was carefully

selected to ensure that all of the functional units were exercised.

To obtain a comprehensive switching activity in the microprocessor, a trac-

ing facility was also developed to monitor all of the internal nodes of the target

chip. The tracing facility is capable of monitoring each node for all processed

switching events. Figure 30 illustrates the circuit-level workload generated from

the simulation. For each node in the circuit, the voltage level is monitored and

events are created when the voltage levels pass a logical threshold. An event is

either el[t] (change from logic level 0 to 1 at time t) or eO[t] accordingly. The

12The switch-level analysis in SPLICE was performed using a relaxation based method that uses MOS oriented models.
Virtually unlimited levels of signal strength can be associated with each of the logic values in order to further enhance the accuracy.
This approach allows a correspondence between the electrical output conductance and the logic output strength. A fanout-dependent
delay-model capable of handling first-order effects is used to achieve accurate delay-handling.

111

NODE NAME NODE NAME..........
•nO el(tl), eO(t2), el(t4), eO(t5)

inl. " .in1 el(t2), eO(t5)

M2 ! in2 el(t3), eO(t4), el(t6), eO(t7)
3 Mn3 el(tl), eO(t3), el(t6)

bust ibusO el(t3), eO(t5)
bus - busl e0(t3), el(t5)

I bumS bus3 el(t3), eO(t5)

addrl , "addrl41(t2)
addrl 5 addrl5
-
time t i t2 t6 t4 t5 t6 t!

Results from circuit simulation Generated work load data

Figure 30: Work load data.

trace data for each event consist of the time of the event, the hierarchical node

name and the new and previous logic levels and their strengths. The trace data

from the simulation are used as implied workload on the target system during the

operational period. The trace data are used along with the Monte Carlo simula-

tion to model wear-out at the device level, due to electromigration and oxide-

breakdown as described in Section 7.1.2.

7.1.2. Monte Carlo simulation

7.1.2(a). Electromigration

The process of electromigration is modeled by removing elements (metal

grains) in a matrix that depicts a metal line. This approach attempts to mimic the

112

actual wear-out processes as given in the graphical metal-layer model used in

[38]. A more elaborate model such as the two-dimensional model proposed in

[38] can be used for higher accuracy but it would not be suitable for analyzing a

whole chip. My simplified model allows reasonable computational time and

storage space requirements for analyzing thousands of nodes simultaneously (for

each metal interconnect in a VLSI circuit).

The depicted matrix approximates the critical region near the switching dev-

ice in the metal line where the chance of having electromigration is the highest.

Size of the matrix: The size of the matrix is chosen to mimic the actual grain

size in the metal layer. The size of the matrix is (n x n), where n is equal to the

number of grains across the width of the metal line. Thus, the relative size of

grain to the width of a metal line is reflected on the size used for the matrix. The

size of the matrix determines the resolution (how roughly the failure steps will

take place) of failure process. This approach approximates the actual grain dislo-

cation processes due to the current stress.

An example of a metal line model is shown in Figure 31. The line shown in

the figure has the actual device dimension of the target chip used in our case

study. The width of the lines is 3.3 g and the grain size (diameter) of 1.1 p.. The

metal lines in the chip are approximately 0.25 4 thick.

Initialization: Initially, N matrices of the size (n x n) are considered to model all

of the N nodes in the circuit. The nodes that have a very low switching rate

(having low failure probability) are dropped and 350 most likely-to-fail nodes are

113

FOR N=3 g g L g.... metal width = 3.3 micron

f=g g g o grain size 1.1 x 1.1 micron

Simulated -

Matrix "g '" , VOID (failure)

L A removed
... . .element graing 9 g

Figure 31: Modeled metal line.

considered for the analysis. The number of nodes to be considered was chosen

such that time and space requirements for an exhaustive analysis is reasonable.

Once matrices are initialized, elements are removed based on probabilities calcu-

lated in the subsequent steps upon detection of an event, from the circuit simula-

tion trace, associated with the matrix (node) in question.

Wear-out modeling: Once the matrix size is selected and initialized, we begin

the Monte Carlo process by reading and processing trace data from circuit simu-

lation. Each switching event from circuit simulation triggers a Monte Carlo

evaluation of the matrix that depicts the gate/node associated with the event. The

trace from circuit simulation is repeatedly applied, and the grain removal process

continues until a failure occurs.

a

114

Probability of grain removal calculation: To calculate the probability of a grain

removal during each switching event, we first determine the amount of charge

flow, through a grain, needed to fail (remove) the grain. The mean and variance

of this variable are calculated from empirical data. Then we calculate how much

current is actually imposed on the boundaries of the grain during each switching.

Using the distribution of charge-amount to fail-probability, we calculate the pro-

bability of failure for each switching event. The specific steps in the foregoing

calculations are as follows:

STEP A: Using empirical TTF data from physical experiments, we determine the

distribution of the charge amount that must be exerted on a given line/grain to

cause an electromigration failure.

i. First, we obtain the mean and variance (in seconds) of the TTF distribution

from reported experimental data.13 Typically, the empirical TTF distribution is

log-normal. For simplicity, we assume that it is normally distributed. Since the

variance-mean ratio of the distribution is very small, this assumption is reason-

able.

ii. Next, the average current I, (in amperes) that was used in the physical experi-

ments is also obtained from experimental data. From the average current for the

device tested, current I (in amperes/cm2) per-unit-area is calculated by dividing

I, by the dimension of the cross section (in square centimeter) of the metal line.

"Many authors report experimental results on the determination of TTF of metal lines in ICs through physical testing. We

use the results reported in [36] since they appear to be representative for the technology similar to that we are concerned with.

115

I=Io[4cross-section of testedmetalline] (1)

iii. We transform the TTF distribution to charge-to-failure (in C) distribution by

multiplying the mean and variance of the TTF distribution by the average current

calculated from Equation (1).

Charge.tojfailure=TrFxCurrent(I) (2)

iv. We scale the distribution obtained in Equation (2) by the the cross section

area of the metal grain used in our design. We perform this scaling by the fol-

lowing equation:

Chargejforjailure(scaledforgrainremoval) (3)

=Charge_tojailurexGrain_cross -sectionalarea

Here, we are assuming that the amount of current density needed to fail a given

metal line varies linearly with respect to cross-sectional area. This assumption is

reasonable because the atomic flux14 due to the field generated from a given elec-

tronic current density is proportional to the cross-sectional area (assuming that

other device parameters such as temperature, conductance and activation-energy

remain unchanged). Once we obtain the amount of current density required to

remove a grain, the next step is to determine the current density in through the

target metal line during each switching event. In the following step, we calculate

current through a node during each switching event.

"4Migration of metal atoms through a confined region in space. In our case, cross section of a metal line is the confinement.

116

STEP B: For each switching event, charge that would be exerted on the metal

line is calculated from the metal length, floating capacitances and operating vol-

tage. The amount of charge that flows through the critical region (which is

modeled with a matrix) of a metal line, in a switching event, is the total charge

that the metal line can hold. The integral of the voltage-capacitance product is

the total charge that the metal line can hold:

ChargeDue toSwitching=f Capacitance (F)xOperatingVoltage (V)dt (4)

Then, to find the charge amount that goes through a single grain, we multiply the

charge due to switching from Equation (4) by the ratio of the cross-sectional area

of a grain and that of the metal line:

Charg eDuejtoSwitching (forgrain) (5)

=ChargeDue_toSwitchingx (cross section areaof-.grain)(cross sectionarea_ofjline)

STEP C: Using the result from Equation (5), we calculate the grain removal pro-

bability from the charge-to-failure distribution generated in step A as illustrated

in Figure 32. The probability of grain removal for a switching event is the area

under the probability distribution up to the charge value calculated in Equation

(5). The following example illustrates the grain-removal probability calculation:

STEP A: The mean TTF reported in [36], for the average current (2E+6 A/cm 2

[normalized] for tested wire) applied to the tested lines, is 774,000 sec [T=3096].

The charge value of 1.55E+12 C/cm 2 (variance: a=6.19E+9) is obtained by

117

Normal Distribution Generated from Mean and Variance Calculated in Step A

t - Mean and variance

Probability frm Step A

(Not to scale)

Probability (grain removed I switching)

Charge value

Total harge rom StepB

Figure 32: Grain removal probability calculation.

multiplying the mean TTF by the average current. This is the mean value of the

charge-to-fail distribution for the tested line. Scaling this distribution to a

1.1 IX X 0.25 gx wire section(for a grain in our target system design), we have

mean charge of 5.64E+4 C (Normal distribution:a = 2.24E+0) for the charge-to-

fail distribution for a grain removal in our simulation.

STEP B: The charge that flows during a switching event, through the critical

region, is calculated in this step. For the target chip used in our experiment, a

3 gx x 1520 gx wire (8.73E-4F/gt2), for example, has a net capacitance of

3.98E-12F(3.98 pF). Thus, in each switching event, at the operating voltage of

5 V, the total charge that flows through the critical region in the metal line is

19.9 pC Scaling this result, to the dimension of a grain, gives us the following

118

result: 4.98 pC for a grain (1 g x .25 g section). We perform a similar calcula-

tion for every line considered for simulation based on layout information.

STEP C: In this step we combine the result of steps A and B to generate the

grain removal probability for each line for a switching event. From the normal

distribution of charges for a grain removal calculated in step A,

N(564E+4,2.24E+O), we approximate the probability of grain removal P(x<4.98)

to be about 2.3E-5. Thus, the probability of a grain removal, for the example

metal line, in each switching event, is 0.000023.

Monte Carlo process: The above steps described how to obtain the grain-

removal probability in each switching event. This section discusses the Monte

Carlo evaluation of the electromigration wear-out mechanism. Initially, a clean

matrix (all entries initialized as 1) is assigned to each node, and the grain-

removal probability for each matrix (node), given a switching is calculated and

stored in a look-up table. The grain-removal probabilities for all grains in a same

line are the same. Once initialization is complete, the simulator iterates, in time,

until a failure is detected. In each time-iteration step, if an event is found in trace

data, the wear-out mechanism is evaluated for the matrix corresponding to the

node at which switching has occurred.

For each grain in the evaluated matrix, a random variable (assigned with a

random number generated from the uniform distribution [0.0,1.0]) is compared

with the grain-removal probability found in the look-up table. If the random

variable falls within the 'fail-region' of the grain-removal probability space, then

119

the grain is removed from the matrix. Thus, at any given time, an entry in a

matrix can be voided (0) (i.e., grain has been removed) or intact (1). The state of

a matrix is the condition of entries in the matrix, e.g., (011,111,111) is a state in

which the first row - first column entry is void and the rest are intact. Once a

grain is removed, the removal probabilities for the grains in the same column of

the matrix increase appropriately to compensate for increased current density now

through a thinner metal region. A graphical example of the grain-removal

processes and metal line failure is illustrated in Figure 33. The above process

continues until a failure is detected. Trace data from circuit simulation are

repeatedly applied. Figure 34 describes the electromigration-simulation algo-

rithm.

7.1.2(b). Oxide breakdown

This section describes the Monte Carlo approach to simulating the effect of

long-term circuit operation on gate-oxide reliability. It is often assumed that the

overall reliability of oxides in a chip is limited to the given fabrication technol-

ogy, which includes the quality of the silicon material, the cleanliness of the

fabrication environment, and the gettering and oxidation conditions. The key

concerns for most of the work in this area have been defect-related failures.

Every weak spot, i.e., defect point, behaves as a normal oxide with a thickness

that is smaller than the nominal thickness. Simple and fast capacitor breakdown

tests [40] or other conventional testing/diagnosis can determine the failing spots

related to defect. However, not all oxide failures contribute to the defect-related

120

P1 P2 P3

I I

INITIAL
STATES

S............................

II

- FAILURESII

STATES
F L33: w -out --------.

Figure 33: Electromigration wear-out process.

121

Calculate grain-removal probabilities and store it in LOOKUPTABLE
For each time tick {

Increment time by simulation resolution
If (Switching event is observed from trace){
I EvaluateSwitching_Event0 {

Evaluate electromigration{
I For the node(matrix) corresponding to the detected event {
I For each grain in the matrix{
SI I Look up the removal probability
I I from LOOKUP_TABLE(generated in initially)

II I Decision variable = random number between [0,1]
I I I If (Decision variable < removal probability) {

I I Remove grain - Update matrix
1 If void-path (failure) detected then Exit

I I Recalculate removal probabilities{
I I For each grain in the same
II I column in the matrix{
II I Recalculate removal probability
I I(Compensate for increased current
I Ithrough, now, a thinner metal line)
I I Update LOOKUPTABLE
I E t }

~~~I Iffiuedtcd
I~~~ Reor

I}

Evaluate other Wearouts{...}

Realjime -- TimeStampOnEvent)
If failure detected {

Record 4
1. Failure mode (e.g. electromigration)
2. List of transition probabilities

for the transition path that led to
the failure

3. Biasing parameters
Exit
}

Figure 34: The electromigration-simulation algorithm.

thinning effect that cannot be screened at the burn-in stage.

In our wear-out analysis, the thinning effect of gate oxide and subsequent

failure, due to the operational stress, is considered. The thinning effect of gate



122

oxide occurs from charge trapping. This failure model is commonly accepted as

one of the major failure modes [40]. Charge trapping occurs when the device is

active, i.e., when the electrical field is applied on the oxide. We determine when

the device (gate) is active from the circuit simulation trace.

We simulate time dependent gate oxide breakdown as imposed by electrical

fields from actual switching conditions (from running actual software on the

chip) for each gate. An example of the gate oxide model is shown in Figure 35.

As shown in Figure 35, the level of dielectric condition of an oxide is modeled

by the number of elements in a stack. The oxide condition is nominal when the

representative stack is full. The process of oxide breakdown is modeled by

decreasing the effective thickness of oxide which is implemented by removing

elements from the stack. An oxide breakdown occurs when the stack is empty.

A Monte Carlo analysis similar to that used for electromigration analysis is

used to simulate the oxide-breakdown process. An element in the stack may be

removed, for each clock period when the gate is active, based on a probability

calculated from experimental data. The MTTF of a target oxide was-determined

for different operating variables in [40].

We also consider the variation in oxide quality that is introduced during the

fabrication process due to uneven oxidation. At the beginning of a simulation

run, to model the defect distribution variance, the number of elements initialized

for each stack is perturbed by the percent-tolerance parameter for oxide thickness

in fabrication data.



123

TIME DEPENDENT GATE OXIDE BREAKDOWN

Gate Oxide Condition Stack Model

S-, ]' : 'I
t ,., I

I , I

i\\\•l ' '[
m m ! • IN N -

Tbd ' I

Sl' - 'I
N N -

! I_ • _ •

Gate. m m

i •2
Ssubstrate

BreakDown

Figure 35: Modeled gate oxide.

If all elements in the stack are removed, i.e., oxide breakdown occurs, then a

chip failure is assumed. The above wear-out processes are carded out in parallel

for all the gates in the circuit.

The above analysis (electromigration and oxide breakdown) can be per-

formed in parallel, under varying operating environments and fabrication technol-

ogy parameters. In particular, operating voltage, temperature and the device



124

dimension can be varied and the reliability impact of reduced dimension and

technology improvements can be quantified.

In the above Monte Carlo steps, the probability of having a grain removed

from the matrix or having an element removed from the stack is extremely small

to cause a failure within a reasonable simulation period. Thus we enhanced the

Monte Carlo analysis approach to make automatic use of importance sampling to

reduce the run lengths. The underlying theory of the method of importance sam-

pling is described in the next section.

7.1.3. Importance sampling

The problem with direct simulation of device wear-out processes is the time

required to perform the analysis, because the device failure, due to wear-out,

occurs in the order of years if not in tens of years. Simulation of such a scenario

is impossible with the capabilities of current computational resources. Thus, we

employ importance sampling technique [51] to allow acceleration of the events

causing the wear-out by biasing the related parameters to increase the chance of

failure.

Importance sampling theory: Given a function f (x), assume that we are

interested in estimating the integral:

1

Jf (x)dx
0

by taking a sample (x ,x2,..,xN) from random variable x over the range [0 < x <



125

1 and calculating the average of f (x). The objective of importance sampling is

to concentrate the distribution of the sample points on the parts of the interval

that are of the highest importance instead of spreading them out evenly. Thus,

instead of sampling following an uniform distribution, we introduce a sampling

distribution with the density function g (x):

1

fg (x)dx = 1.
0

In order not to bias the result, we compensate for the distortion by taking

f'(x)= f W)in place of f (x) as our estimator of 0. The likelihood ratio is thus
g (x)

f (x) , and the variance of this new unbiased estimator is

g(x)

0- -v g Wdx

f (x)
For a minimum variance solution, g (x) must be close to . However,e

obtaining the optimal g (x) requires the knowledge of 0, which is unknown. The

above considerations do provides some guideline for selecting g (x). In particu-

lar, the shape of g (x) should follow the shape of f (x) as closely as possible.

Applications: Importance sampling is used to accelerate the wear-out scenario in

our Monte Carlo simulations. The reliability measure we are interested in

estimating is the mean-time-to-failure (MTTF).



126

In the electromigration analysis, the probability of grain removal in each

switching event is very small since the frequency of the electromigration is in the

order of years. Therefore, we focus on those metal lines that are most likely to

fail. Metal lines having a higher rate of switching events have a higher chance of

causing a failure and have their wear-out accelerated. We accomplish this effect

by biasing the probability distribution of grain removal appropriately at each

switching event. This procedure is referred to as transition probability mapping.

Transition probability mapping: At each switching event, we have the probabil-

ity P [state (i)-->state (i+l)]15 where state(i) is a matrix pattern resulting from

grain removal, due to a switching event i. Since the P [state (i)--.state (i+1)] is

very small (i.e., grain removal probability is small), no state transition is likely to

occur within a reasonable simulation period. Hence, we use a new

p'[state (i)- state (i+1)] (>> p) calculated as follows:

1) Maximum probability (Pmax) of grain removal for all lines is calculated by

taking the 'worst case condition of each line (i.e., single grain is left and,

thus, high current flux flows through a smaller cross section), and calculating

its removal probability for a switching event.

2) Minimum grain removal probability (Pmin) is calculated in a similar way.

All lines are considered, and removal probability while the metal line is fully

intact.

"Capital letter P denotes probability, e.g., P(event(i)) is probability of event (i) occurring.



127

3) Project the original probability range to

P'[state (i)--state (i+I)]-=((P [state (i)---state (i+l)]-P')x( -
Pmax

P'max and P'min are experimentally determined to make the state transition pos-

sible; yet, each transition is not so abrupt.

An example probability mapping for Monte Carlo simulation acceleration is illus-

trated in Figure 36. The original grain removal probabilities range from 6.20E-

6(Pmin) to 2.83E-5(Pmax). With probabilities in this range, no grain removal is

likely to occur within a reasonable simulation period. Thus we map the original

probabilities to the [2.OE-2,5.OE-2] range to accelerate the wear-out process.

Unbiasing: Given a state transition path state(i)->state(i+l)->..->state(n-1)-

>state(n) where state(i) is clean state (i.e., no grain is removed) and state(n) is

failed state (refer to Figure 31), the probability of having a failure is

riP [state ( i)---wsate ( i +l)],P [state ( i +I)---state (i+2)],....P [state (n -1)--->state (n)].

The new biased path transition probability is

IIP'[state (i)--state (i+1)],P'[state (i+l)--state (i+2)],..,P'[state (n-I)--->state (n)].

Thus the likelihood ratio of each Monte Carlo transition path is

liP [state (i)->state (i + 1)], P [state (i + I )--->state (i +2)] ..,P [state (n -1 )-4state (n)]
riIP [state (i)-->state (i + 1 )], P' [state (i + I )--->state (i +2)] .., P'[state (n - I )--state (n)]



128

........................... Pmin = 0.0000062
Pmax =0.0000283

.......'

. 0. .3 0.04 0.05 (Prob)

0.0 0.01 0.02 0.03 0.04 0.05 (Prob)

P'min = 0.020 P'max = 0.050

Figure 36: Transition probability mapping for wear-out acceleration.

So as not to bias the result, we compensate for the distortion due to the accelera-

tion process. Each resulting accelerated time-to-failure is divided by the likeli-

hood ratio of its unique transition path to obtain the desired real time-to-failure.

Acceleration for oxide breakdown: A similar importance sampling approach was

taken for the oxide breakdown analysis. For the oxide breakdown analysis, pro-

bability of having an element removed from the stack is very small and the possi-

a



129

bility of having a failure within a reasonable simulation period is extremely low.

Thus we choose a new probability Po' for removing elements instead of the ori-

ginal Po (Po' >>> Po) for a given gate oxide. The choice of Po's was experi-

mentally determined and was in the range [0.05 and 0.25].

7.2. Case Study

The HS1602 microprocessor is used to illustrate the wear-out simulation

approach.

7.2.1. Experiment

First, the entire microprocessor was simulated at the switch level. The ini-

tialization phase of the microprocessor, consisting of a watchdog test, a parity

test, an instruction set test, a RAM test, and a ROM sum test which ensures that

all of the functional units are exercised, was simulated. The simulation included

the processor accessing one external ROM for instructions and another external

ROM for the initialization parameters. Arithmetic processing and address gen-

eration was also performed. Traces of events were collected from the simulation.

Using the switching activity information, the wear-out processes were simu-

lated using Monte Carlo techniques. To model electromigration each metal line

was represented by a 3 by 3 matrix of metal grains. We use the average metal

grain size of 1/3 of the width of the metal line. The grains in the matrix were

removed during the simulation based on a normal probability distribution and the

current density calculated from the trace data. The probability of grain removal



130

was calculated from the physical experimental results reported in [36]. The

oxide-breakdown was analyzed using stacks with a mean size of 32 elements.

We ran initial experiments where the size of the stack was varied to determine

the stack size to use. The stack size was chosen such that additional size would

not enhance the accuracy of the result. First, 15 percent defect variance was

introduced to the original stack size. The elements were taken out during the

simulation based on a normal probability distribution.

The above analysis was performed under varying operating environments

and fabrication technology parameters. The operating voltage and the device

dimension were varied. Voltage levels tested were 3, 5 and 7 V. Different dev-

ice scales (2.1 g. 2.8 g. 3.5 g.) were tested to study the reliability impact of

reduced dimension. Other technology improvements such as metal lines with

better conductance were also studied. A total of 2304 Monte Carlo simulations

were performed. Increasing the number of Monte Carlo runs beyond this value

did not significantly change the nature of our results.

7.2.2. Results

Reliability projections given by the wear-out analysis, at T = 300'K with a

5 V power supply, are shown in Figure 37. The figure shows the expected life-

time (y-axis) of the controller as a function of the overall average operational

hours per day (x-axis) and the percent of actual time (line attribute) in use. For

example (Figure 37: Example A), if the overall operational period is 12 hr/day

and the actual usage of the controller is 75 percent of this time, then the expected



131

EXPECTED LIFE TRIME OF THE CONTROLLER

%-time in used

100%
36

1 175%
32 L _

30 3
:50%

(years)

24*.

22

20 , *A

18

16 :u

14m

103, Ia

6

3 6 9 12 15 18 21 24

AVERAGE HOURS USED PER DAY (hr)

Figure 37: Expected lifetime of the target chip.

lifetime of the chip is about 14 years.

The time distributions of the failure points, for each device dimension, are

shown in Figure 38. The circuit fabricated in 3.5-p. technology has an MTTF of

5.643 years and with a 90 percent confidence interval between 3.856 and 7.322



132

'1 i2 .3 .4 J 18 P9 (years)

3.5 p: g - 5.643 a - 1.193 90%_ConfidenceInterval [3.856,7.322]

1 2 3 4 5 6 7 8 9 (years)

2.8 g: p - 2.317 a 0.821 90%_ConfidenceInterval [1.0846,3.477]

1 .2 13 4 5 6 7 8 P (years)

2.1 g: g = 0.843 a = 0.334 90%_ConfidenceInterval [0.342,1.314]

Figure 38: TTF distribution for different scale.

years. The dashed lines show the distribution of the failure points due to elec-

tromigration and the dotted line shows the distribution due to the oxide break-

down. The results show that most of the failures are due to electromigration. No

more than than 10 percent of the failures for the 3.5 g chip were due to the oxide

breakdown.

The results shown in Figure 39 give TTF distributions (y-axis) for operating

voltage (x-axis). Ninety percent confidence limits are shown in dotted lines. A

log-linear relation is observed between the TTF and operating voltage. Note that

these are the results based on the assumption that all other operating variables

(e.g., temperature) stays the same, which is generally not the case.

E



133

20
"3.5 micron

18 @ 300 Kelvin

16

14
I

12
I

10
TrF

(years)

8

* I

6 -

4

2

I I I I

3.0 5.0 7.0

Operating Voltage (V)

Figure 39: TTF distribution at different operating voltage.

The results of the simulation compare favorably with other reported experi-

mental results. The reliability studies performed on Intel's 8086 microprocessor



134

are reported in [58]. Intel's 8086 microprocessor's fabrication conditions are

approximately equivalent to those under which our target chip was fabricated.

The report indicates that the chance of having a failure of the 8086 microproces-

sor at 343 Kelvin is about 0.097% at 1000 hr. This failure probability was calcu-

lated from the projection using the Arrhenius relationship from the accelerated

testing data. The result of the Monte Carlo simulation at the same temperature is

given in Figure 40. The figure shows cumulative density function of failure over

time. The MTTF for this simulation run is 0.438 year and a is 0.127 year. The

cumulative density from the manufacturer's report is plotted with X on the same

0.125 0.250 0.375 0.500 0.625 0.750 0.875 (years)p I I I I

p=1

------ Simulation result: 0.104 yrs

p- - Intel's result: 0.097% failure at 0.117 yrs

Figure 40: Cumulative density function(CDF) at 343 Kelvin.



135

figure (0.097 at t=0.117 year). A simple regression from the simulation result

indicates that time for 0.10% (= 0.097% chance: manufacturer's report) to fail is

about 0.104 year. Due to the high reliability of these VLSI systems, only the

values at the tail region of the TTF distribution can be validated. However, it is

important to note that we can generate the entire distribution. The percent

difference between the two TTFs is about 11 percent. This difference is likely

due to the consideration of only two wear-out/failure mechanisms, i.e., only the

electromigration and oxide-breakdown mechanisms.

The simulation result also shows that there is a handful of detected metal

lines that failed most frequently due to electromigration. To increase reliability,

these metal lines can be physically modified (e.g., use thicker lines to route these

wires) or an alternate logic design can be used to reduce the switching effects on

these lines. Table 7 lists the lines that are most sensitive to failure. A large

Table 7: Most sensitive metal lines.

Location node name metal line length(pt) Percentage

ALU hs1602_ml_.ca_al_m5_m2_u12_.clkb 410 13.4%.

ALU hs1602_ml_caal_m5_m2_u13_clkb 440 7.2%.

ALU hs 1602_m l_ca_al_m5_m2_u21_I2 680 5.8%.

ALU hs 1602_m l_caal_m5_m2_u22_i2 450 5.5%.

CON hs1602_mml_c_u2 1460 5.1%

CON hs1602_ml_cu2_i8 620 3.9%

CON hs 1602_m l_c_u 12 1220 3.6%

CON hs1602_ml_c_ul3 1580 3.6%

WDG hs1602_ml_wul_clkb 340 2.4%

WDG hs1602_ml_w_ul_clkb 340 1.2%

OTHER - 52.3%

TOTAL 100%



136

share of the most sensitive lines are found in ALU and control units, because,

relatively, the ALU is more highly exercised during the chip's operation, i.e., the

lines in the ALU unit are switched on and off more frequently, because relatively

longer lines are used in the control unit.

7.3. Discussion

This subsection described a simulation approach for reliability prediction of

VLSI designs. The approach can effectively model the workload-reliability

dependency of VLSI systems and identify fail-sensitive locations in the circuit at

the design phase. The demonstrated Monte Carlo simulation technique allows

the user to be able to observe dynamic processes of wear-out in the target chip.

Currently, the approach supports simulation of electromigration and oxide-

breakdown.

The approach was illustrated with a case study of the HS1602 microprocessor

intended for control applications. The system under investigation was first simu-

lated at the switch level and trace data on switching activity were collected.

These data were then used along with the Monte Carlo simulation to model

wear-out at the chip level.



137

CHAPTER 8.

CONCLUSIONS

The contributions of this thesis are divided into three subsections. First, the

thesis introduce a hierarchical, mixed-mode simulation approach capable of

injecting runtime transients and tracing their impact. The probability that a tran-

sient results in latch, pin, or functional errors can be determined. The approach

also allows quantification of the impact of transient hardware errors at the

software execution level. Second, to effectively evaluate long-term reliability, a

method for predicting permanent faults in VLSI designs is developed. The

method combines switch-level circuit simulation and device-level Monte Carlo

simulation to achieve realistic reliability assessment. Third, the fault-sensitivity

and reliability analysis methodologies are illustrated with the target systems, and

the results are obtained.

8.1. Summaries

8.1.1. Transient fault sensitivity analysis

This thesis has presented a simulation approach which evaluates the fault

sensitivity of a chip-level design. The approach effectively evaluates the fault-

tolerance and the fault sensitivity of target systems. Faults are automatically

injected in runtime at the device level, and their propagation and impact are mon-

itored at the gate and function levels. A number of techniques for fault sensi-

tivity analysis have been proposed and implemented in the mixed-mode



138

simulation approach. These include transient impact assessment on latch, pin and

functional errors, external pin error distributions due to within-chip transients,

and error propagation models to depict the dynamic behavior of latch errors.

The simulation anlysis has been illustrated via a case study of the impact of

transient faults on a microprocessor-based jet-engine controller. The simulation

approach has been used to identify and isolate the critical fault propagation paths,

the module most sensitive to fault propagation, and the module with the highest

potential of causing external pin errors. The fault propagation path between the

control unit and the watchdog unit is seen to be the most critical, indicating

thereby that an increase in the fault tolerance of this link may significantly

improve the system dependability. The watchdog unit has the highest potential

for causing external pin errors. Of all the functional units, an error occurrence in

the ALU is likely to lead to the largest number of latch errors.

A method to quantify the impact of low-level transients at the software exe-

cution is also presented. The software (program-flow level) upsets in VLSI sys-

tems have been analyzed using the experimental approach. Using test workloads,

the types of upsets at the program-flow level which can result from fault propa-

gation are determined. The mechanisms involved in internal propagation of latch

errors and their effect at the software execution are modeled.

A Markov model was constructed from empirical data to describe the error

propagation within the microprocessor and the subsequent impact at the program

flow. The model was used to identify the functional unit most sensitive to error



139

propagation and the unit with the highest potential of causing software upsets.

Several key error characteristics at the software level were observed.

Overall, there is 21.4 percent chance of having an upset. About 20 percent

of all observed upsets are multiple in nature. Arithmetic operations in the appli-

cation program are most susceptible to upsets. Forty and one-half percent of all

observed upsets are contributed by a program section, which consists of, mostly,

arithmetic instructions.

The coverage of the fault-tolerant design to single and multiple transients

has been evaluated. The locations and the time points of the fault injections are

selected so as to maximize the chance of channel errors. Specifically, faults are

injected under conditions where critical communications were taking place within

the dual system. The results show that the avionic controller had an estimated

100 percent coverage against single isolated transients, while approximately 12

percent of the multiple transients affected both channels.

The fault-dictionary approach to accelerate the mixed-mode fault-injection

process is also presented. The gates around the fault-injection location are

extracted and subcircuit consisting of these gates is formed. This subcircuit is

exercised by exhaustively applying all input combinations while fault injection is

performed. Faulty behavior at each of the subcircuit outputs is analyzed and

recorded in a dictionary. The generated fault dictionary was used to inject, in

runtime, the logical pattern/behavior of device level faults from a look-up table

(dictionary) on a fast logic simulation. We find that 99.8 percent of the injected



140

faults have no effect on the system, i.e., no latch error would result from them.

Multiple errors are less likely to occur (8 percent) but then can be a potentially

serious problem since they can cause multiple failures.

8.1.2. Permanent fault wear-out simulation

The thesis has also described a simulation approach for.reliability prediction

of VLSI designs. The approach can effectively model the workload-reliability

dependency of VLSI systems and identify fail-sensitive locations in the circuit at

the design phase. The demonstrated Monte Carlo simulation technique allows

the user to observe dynamic processes of wear-out in the target chip. Currently,

the approach supports simulation of electromigration and oxide-breakdown. The

approach was illustrated with a case study of the HS1602 microprocessor system.

The system was first simulated at the switch level and trace data on switching

activity were collected. These data were then used along with Monte Carlo

simulation to model wear-out at the chip level.

8.2. Future Extensions

The need for innovative fault-sensitivity and reliability evaluation techniques

will continue to grow as systems become more complex. Specifically, more

methods are needed to perform yet faster fault simulations that can handle incres-

ingly large VLSI systems. Also, to study the effects of device-level faults on

software under realistic operating conditions, low-level wear-out analysis must be

integrated into the fault-injection simulation environment. One of the important

challenges that lie ahead is integrating fault/failure analysis to effectively evaluate



141

alternatives in design tactics and to aid in the synthesis of architectures that meet

required fault-tolerant specifications.



142

REFERENCES

[1] H. Ball and F. Hardy, "Effects and detection of intermittent failures in digital
systems," 1969 FJCC, AFIPS Conference Proceedings, vol. 35, pp. 329-335.

[2] R. K. Iyer and D. J. Rossetti, "A measurement-based model for workload
dependence of CPU errors," IEEE Transactions on Computers, vol. C-35,
pp. 511-519, June 1986.

[3] T. C. May and M. H. Woods, "Alpha-particle-induced soft errors in dynamic
memories," IEEE Transactions on Electron Devices, vol. ED-26, pp. 2-9,
January 1979.

[4] R. J. McPartland, "Circuit simulations of alpha-particle-induced soft errors
in dynamic RAM's," IEEE Journal of Solid-State Circuits, vol. SC-16, pp.
31-34, February 1981.

[5] R. Johnson, S. Diehl-Nagle and J. Hauser, "Simulation approach for model-
ing single event upsets on advanced CMOS SRAMS," IEEE Transactions
on Nuclear Science, vol. NS-32, pp. 4122-4127, December 1985.

[6] G. C. Messenger, "Collection of charge on junction nodes from ion tracks,"
IEEE Transactions on Nuclear Science, vol. NS-29, pp. 2024-2031,
December 1982.

[7] J. Lala, "Fault detection isolation and reconfiguration in FTMP: Methods
and experimental results," The 5th AIAA/IEEE Digital Avionics Systems
Conference (DASC), pp. 21.3.1-21.3.9, 1983.

[8] K. G. Shin and Y.H. Lee, "Error detection process - model, design, and its
impact on computer performance," IEEE Transactions on Computers, vol.
C-33, pp. 529-540, June 1984.

[9] K. G. Shin and Y.H. Lee, "Measurements of fault latency: methodology and
experimental results," Technical Report CRL-TR-45-84, Computing
Research Laboratory, University of Michigan, Ann Arbor, 1984.



143

[10] J. Arlat, Y. Crouzet and J. Laprie, "Fault-injection for dependability valida-
tion," LAAS Research Report no. 88-363, December 1988.

[11] B. Courtois, "Some results about the efficiency of simple mechanisms for
the detection of microcomputer malfunctions," Digest, FTCS-9, The Ninth
International Symposium on Fault Tolerant Computing, pp. 71-74, June
1979.

[12] R. E. Glaser and G. M. Masson, "Transient upsets in microprocessor con-
trollers," Digest, FTCS- 11, The Eleventh International Symposium on Fault
Tolerant Computing, pp. 165-167, 1981.

[13] M. E. Schmid, R. L. Trapp, A. E. Davidoff and G. M. Masson, "Upset expo-
sure by means of abstraction verification," Digest, FTCS-12, The Eleventh
International Symposium on Fault Tolerant Computing, pp. 237-244, 1982.

[14] R. Koga, W. A. Kolasinski, and M. T. Marra, "Techniques of microproces-
sor testing and SEU-rate prediction," IEEE Transactions on Nuclear Sci-
ence, vol. NS-32, pp. 4219-4224, December 1985.

[15] J. Sosnowski, "Evaluation of transient hazards in microprocessor controll-
ers," Digest, FTCS-16, The Sixteenth International Symposium on Fault
Tolerant Computing, pp. 364-369, 1986.

[16] R. Chillarege and R. Iyer, "Measurement-based analysis of error latency,"
IEEE Transaction on Computers, vol. C-36, no. 5, May 1987.

[17] J. Cusick, R. Koga, W. A. Kolasinski, and C. King, "SEU vulnerability of
the Zilog Z-80 and NSC-800 microprocessors," IEEE Transactions on
Nuclear Science, vol. NS-32, pp. 4206-4211, December 1985.

[18] J. Karlsson, U. Gunneflo, and J. Torin, "The effects of heavy-ion induced
single event upsets in the MC6809E microprocessor," Proceedings, 4th
International Conference on Fault-Tolerant Computing Systems,
GUITG/GMA, Baden, W. Germany, 1989.



144

[19] U. Gunneflo, J. Karlsson, and J. Torin, "Evaluation of error detection
-schemes using fault injection by heavy-ion radiation," Digest, FTCS-19, pp.
340-347, 1989.

[20] D. Lomelino and R. Iyer, "Error propagation in a digital avionic processor:
a simulation-based study," Proceedings, Real Time Systems Symposium, pp.
218-225, Dec. 1986.

[21] P. Duba and R. Iyer, "Transient fault behavior in a microprocessor: a case
study," 1988 ICCD Proceedings, October 1988.

[22] G. Choi, R. Iyer, R. Saleh and V. Carreno, "Fault behavior model for an
avionic microprocessor," Proceedings, International Working Conference on
Dependable Computing For Critical Applications, Santa Barbara, CA,
August 1989.

[23] E. W. Czeck, "On the prediction of fault behavior based on workload,"
Ph.D. Dissertation, Dept. of Electrical and Computer Engineering, Carnegie
Mellon University, April 19, 1991.

[24] R. Iyer and D. Tang, "Experimental analysis in computer system dependabil-
ity," Fault-Tolerant Computing, D. K. Pradhan, Ed.: Prentice Hall, 2nd ed.,
1994.

[25] F. Yang, "Simulation of faults causing analog behavior in digital circuits,"
Ph.D. thesis, University of Illinois, 1992.

[26] J. McGough and F. Swern, "Measurement of fault latency in a digital
avionic mini processor," NASA Contract Report 3462, Washington, DC
1981.

[27] A. Dupuy, J. Schwartz, Y. Yemini, and D. Bacon, "NEST: A network simu-
lation and prototyping testbed," Communications of the ACM, vol. 33, no.
10, pp. 64-74, October 1988.

[28] K. Goswami and R. Iyer, "DEPEND: A design environment for prediction
and evaluation of system dependability," Proceedings, 9th Digital Avionics
Systems Conference, October 1990.



145

[29] J. Clark and D. Pradhan, "REACT: A synthesis and evaluation tool for
fault-tolerant multiprocessor architectures," Proceedings, Annual Reliability
and Maintainability Symposium, pp. 428--435, 1993.

[30] M. Woods, "MOS VLSI reliability and yield trends," Proceedings of the
IEEE, vol. 74, no. 12, pp. 1715-1729, December 1986.

[31] J. Black, "Electromigration failure modes in aluminum metallization for
semiconductor devices," Proceedings of the IEEE, vol. 57, no. 9, pp. 1587-
1593, 1969.

[32] C. Hu, P. Ko, P. Lee, N. Cheung, and B. Liew, "IC Reliability prediction,"
SRC TECHCON-88, Dallas TX, pp. 240-243, October 88.

[33] J. McPherson, "Stress dependent activation energy," IEEE Proceedings,
IRPS, pp. 12-18, April 1987.

[34] D. Frost, K. Poole, "RELIANT: A reliability analysis tool for VLSI inter-
connects," IEEE Journal of Solid-State Circuits, vol. 24, no. 2, pp. 458-462,
April 1989.

[35] J. Harrison, "On extrapolation from accelerated test MTTF to operating con-
dition MTTF for electromigration failures," SRC TECHCON-88, Dallas TX,
pp. 240-243, October 88.

[36] D. LaCombe and E. Parks, "The distribution of electromigration failures,"
IEEE Proceedings, IRPS, pp. 1-6, April 1986.

[37] L. Brooke, "Pulsed current electromigration failure model," IEEE Proceed-
ings, IRPS, pp. 136-144, April 1987.

[38] P. Marcoux, P. Merchant, V. Naroditsky, and W. Rehder, "A new 2D simu-
lation model of electromigration," Hewlett-Packard Journal, June 1989.

[39] I. Chen and C. Hu, "Accelerated testing of time-dependent breakdown of sil-
icon dioxide," IEEE Electron Device Letters, vol. EDL-8, no. 4, pp. 140-
142, April 1987.



146

[40] J. Lee, I. Chen, and C. Hu, "Statistical modeling of silicon dioxide reliabil-
ity," IEEE Proceedings, IRPS, pp. 131-138, 1988.

[41] B. Ricco, M. Azbel, and M. Bordsky, "Novel mechanism for tunneling and
breakdown of thin silicon dioxide films," Physics Review Letter, vol. 51, no.
19, pp. 1795, 1983.

[42] M. Cortes and R. Iyer, "Device failures and system activity: a thermal
effects model," FTCS-14, 1984.

[43] R. Iyer and D. Rossetti, "A measurement-based model for workload depen-
dence of CPU errors," IEEE Transactions on Computers, vol. C-35, pp.
511-519, June 1986.

[44] Motorola Corporation, MC68000 Programmer's reference manual, Engle-
wood Cliffs: N.J., Prentice-Hall, 1986.

[45] R. A. Saleh, "Nonlinear relaxation algorithms for circuit simulation,"
Memorandom no. UCB/ERL M87/21, Electronics Research Laboratory,
University of California, Berkeley, 1987.

[46] J. Stephen, T. Sanderson, D. Mapper, J. Farren, R. Harboe-Sorensen, and L.
Adams, "A comparison of heavy ion sources used in cosmic ray simulation
studies of VLSI circuits," IEEE Transactions on Nuclear Science, vol. NS-
31, no. 6, December 1984.

[47] D. Nichols, W. Price, W. Kolasinski, R. Koga, J. Pickel, J. Blandford, Jr.,
and A. Waskiewicz, "Trends in part susceptibility to single event upset,"
IEEE Transactions on Nuclear Science, vol. NS-32, no. 6, December 1985.

[48] M. Abramovici, M. Breuer, and A. Friedman, "Digital systems testing and
testable design," Computer Science Press, 1990.

[49] Richard J. Evans, "Detecting bridging faults in CMOS circuits," Ph.D.
Dissertation, University of Oxford, 1991.



147

[50] L. W. Nagel, "SPICE2: a computer program to simulate semiconductor cir-
cuits," ERL Memo ERL-M520, University of California, Berkeley, May
1975.

[51] J. Hammersley and D. Handscomb, Monte Carlo methods, Methuen, Lon-
don, 1964.

[52] D. Saab, R. Mueller, D. Blaauw, J. Abrahm, and J. Rahmeh, "Hierarchical
multi-level fault simulation of large systems," JETTA Journal of Electric
Testing: Theory and Applications, no. 2, pp. 139-149, vol. 1, March, 1990.

[53] E. Ulrich and T. Baker "Concurrent simulation of nearly identical digital
networks," Computer, vol. 77, no. 4, pp.39-44, April 1974.

[54] M. Rimen and J. Ohlsson, "A study of the error behavior of a 32-bit RISC
subjected to simulated transient fault injection," International Test Confer-
ence, pp. 696-704, 1992.

[55] H. Cha, E. Rudnick, G. Choi, J. Patel, and R. Iyer, "A fast and accurate tran-
sient fault simulation environment," Digest, 23rd Int. Symp. Fault-Tolerant
Computing, pp. 310-319, June 1993.

[56] G. Ries, G. Choi, and R. Iyer, "Transient fault modeling," Digest, 24th Int.
Symp. Fault-Tolerant Computing, June 1994.

[57] P. Shahabuddin, V. Nicola, P. Heidelberger, A. Goyal, and P. Glynn, "Vari-
ance reduction in mean time to failure simulations," Proceedings of the 1988
Winter Simulation Conference, pp. 491-499.

[58] Intel, "iAPX 86, 88 microprocessor family," Intel Reliability Report RR-27,
Intel Corporation, Febuary 1981.

[59] Y.-H. Shih, Y. Leblebici and S. M. Kang, "ILLIADS: a fast timing and reli-
ability simulator for digital.MOS circuits," IEEE Transactions Computer-
Aided Design, vol. 12, no. 9, pp. 1387-1402, Sept. 1993.

Io



148

VITA

Gwan Choi received the B.S. Degree in Computer Engineering in 1989 from

the University of Illinois and the M.S. Degree in Electrical Engineering in 1990

from the University of Illinois. He has held summer positions at the Cray

Research Inc. and Tandem Computer Inc. and has been a research assistant at the

University of Illinois since 1988. He has published 19 papers in peer-reviewed

conferences and journals. He is a member of the IEEE. Upon completion of his

Ph.D. work, he will join Texas A&M University as a faculty member in the

Department of Electrical Engineering.


